Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

R. Maier^{1,2}, K. Kim¹, D. Cremers², J. Kautz¹, M. Nießner^{2,3}

International Conference on Computer Vision 2017

- Motivation & State-of-the-art
- Approach
- Results
- Conclusion

Overview

- Motivation & State-of-the-art
- Approach
- Results
- Conclusion

 Recent progress in Augmented Reality (AR) / Virtual Reality (VR)

Microsoft HoloLens

HTC Vive

- Recent progress in Augmented Reality (AR) / Virtual Reality (VR)
- Requirement of high-quality 3D content for AR, VR, Gaming ...

Microsoft HoloLens

HTC Vive

NVIDIA VR Funhouse

- Recent progress in Augmented Reality (AR) / Virtual Reality (VR)
- Requirement of high-quality 3D content for AR, VR, Gaming ...
 - Usually: manual modelling (e.g. Maya)

Microsoft HoloLens

HTC Vive

NVIDIA VR Funhouse

- Recent progress in Augmented Reality (AR) / Virtual Reality (VR)
- Requirement of high-quality 3D content for AR, VR, Gaming ...
 - Usually: manual modelling (e.g. Maya)
 - Wide availability of **commodity RGB-D sensors**: efficient methods for 3D reconstruction

Microsoft HoloLens

HTC Vive

NVIDIA VR Funhouse

Asus Xtion

- Recent progress in Augmented Reality (AR) / Virtual Reality (VR)
- Requirement of high-quality 3D content for AR, VR, Gaming ...
 - Usually: manual modelling (e.g. Maya)
 - Wide availability of commodity RGB-D sensors: efficient methods for 3D reconstruction
- Challenge: how to reconstruct high-quality 3D models with best-possible geometry and color from low-cost depth sensors?

Microsoft HoloLens

HTC Vive

NVIDIA VR Funhouse

Asus Xtion

RGB-D based 3D Reconstruction

Goal: stream of RGB-D frames of a scene → 3D shape that maximizes the geometric consistency

RGB-D based 3D Reconstruction

- Goal: stream of RGB-D frames of a scene → 3D shape that maximizes the geometric consistency
- Real-time, robust, fairly accurate geometric reconstructions

KinectFusion, 2011

"KinectFusion: Real-time Dense Surface Mapping and Tracking", Newcombe et al., ISMAR 2011.

RGB-D based 3D Reconstruction

- Goal: stream of RGB-D frames of a scene → 3D shape that maximizes the geometric consistency
- Real-time, robust, fairly accurate geometric reconstructions

KinectFusion, 2011

"KinectFusion: Real-time Dense Surface Mapping and Tracking", Newcombe et al., ISMAR 2011.

DynamicFusion, 2015

"DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-time", Newcombe et al., CVPR 2015.

RGB-D based 3D Reconstruction

- Goal: stream of RGB-D frames of a scene → 3D shape that maximizes the geometric consistency
- Real-time, robust, fairly accurate geometric reconstructions

KinectFusion, 2011

"KinectFusion: Real-time Dense Surface Mapping and Tracking", Newcombe et al., ISMAR 2011.

DynamicFusion, 2015

"DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-time", Newcombe et al., CVPR 2015.

BundleFusion, 2017

"BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration", Dai et al., ToG 2017. 12

- Baseline RGB-D based 3D reconstruction framework
 - initial camera poses
 - sparse SDF reconstruction

- Baseline RGB-D based 3D reconstruction framework
 - initial camera poses
 - sparse SDF reconstruction
- Challenges:
 - (Slightly) inaccurate and over-smoothed geometry

- Baseline RGB-D based 3D reconstruction framework
 - initial camera poses
 - sparse SDF reconstruction
- Challenges:
 - (Slightly) inaccurate and over-smoothed geometry
 - Bad colors

- Baseline RGB-D based 3D reconstruction framework
 - initial camera poses
 - sparse SDF reconstruction
- Challenges:
 - (Slightly) inaccurate and over-smoothed geometry
 - Bad colors
 - Inaccurate camera pose estimation

- Baseline RGB-D based 3D reconstruction framework
 - initial camera poses
 - sparse SDF reconstruction
- Challenges:
 - (Slightly) inaccurate and over-smoothed geometry
 - Bad colors
 - Inaccurate camera pose estimation
 - Input data quality (e.g. motion blur, sensor noise)

- Baseline RGB-D based 3D reconstruction framework
 - initial camera poses
 - sparse SDF reconstruction
- Challenges:
 - (Slightly) inaccurate and over-smoothed geometry
 - Bad colors
 - Inaccurate camera pose estimation
 - Input data quality (e.g. motion blur, sensor noise)

- Baseline RGB-D based 3D reconstruction framework
 - initial camera poses
 - sparse SDF reconstruction
- Challenges:
 - (Slightly) inaccurate and over-smoothed geometry
 - Bad colors
 - Inaccurate camera pose estimation
 - Input data quality (e.g. motion blur, sensor noise)
- Goal: High-Quality Reconstruction of Geometry and Color

High-Quality Colors [Zhou2014]

Optimize camera poses and image deformations to optimally fit initial (maybe wrong) reconstruction

But: HQ images required, no geometry refinement involved

"Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras", Zhou and Koltun, ToG 2014

High-Quality Colors [Zhou2014]

Optimize camera poses and image deformations to optimally fit initial (maybe wrong) reconstruction

But: HQ images required, no geometry refinement involved

"Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras", Zhou and Koltun, ToG 2014

High-Quality Geometry [Zollhöfer2015]

Adjust camera poses in advance (bundle adjustment) to improve color

Use shading cues (RGB) to refine geometry (shading based refinement of surface & albedo)

But: RGB is fixed (no color refinement based on refined geometry)

"Shading-based Refinement on Volumetric Signed Distance Functions", Zollhöfer et al., ToG 2015

High-Quality Colors [Zhou2014]

Optimize camera poses and image deformations to optimally fit initial (maybe wrong) reconstruction

But: HQ images required, no geometry refinement involved

"Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras", Zhou and Koltun, ToG 2014

High-Quality Geometry [Zollhöfer2015]

Adjust camera poses in advance (bundle adjustment) to improve color

Use shading cues (RGB) to refine geometry (shading based refinement of surface & albedo)

But: RGB is fixed (no color refinement based on refined geometry)

"Shading-based Refinement on Volumetric Signed Distance Functions", Zollhöfer et al., ToG 2015

Idea: **jointly optimize for geometry, albedo and image formation model** to simultaneously obtain high-quality geometry and appearance!

• Temporal view **sampling & filtering** techniques (input frames)

- Temporal view **sampling & filtering** techniques (input frames)
- Joint optimization of
 - **surface & albedo** (Signed Distance Field)
 - image formation model

- Temporal view sampling & filtering techniques (input frames)
- Joint optimization of
 - **surface & albedo** (Signed Distance Field)
 - image formation model

- Temporal view **sampling & filtering** techniques (input frames)
- Joint optimization of
 - **surface & albedo** (Signed Distance Field)
 - image formation model
- Lighting estimation using Spatially-Varying Spherical Harmonics (SVSH)

- Temporal view **sampling & filtering** techniques (input frames)
- Joint optimization of
 - **surface & albedo** (Signed Distance Field)
 - image formation model
- Lighting estimation using Spatially-Varying Spherical Harmonics (SVSH)
- **Optimized colors** (by-product)

- Motivation & State-of-the-art
- Approach
- Results
- Conclusion

Overview

Overview

Overview

Shading-based Refinement (Shape-from-Shading)

Overview

Shading-based Refinement (Shape-from-Shading)

Temporal view sampling / filtering

Overview

Shading-based Refinement (Shape-from-Shading)

> Spatially-Varying Lighting Estimation

Temporal view sampling / filtering

Overview

Shading-based Refinement (Shape-from-Shading)

> Spatially-Varying Lighting Estimation

Joint Appearance and Geometry Optimization

- surface
- albedo
- image formation model

Temporal view sampling / filtering
Approach

Overview

Shading-based Refinement (Shape-from-Shading)

Spatially-Varying Lighting Estimation

Joint Appearance and Geometry Optimization

- surface
- albedo
- image formation model

Temporal view sampling / filtering

High-Quality 3D Reconstruction

Temporal view sampling / filtering

Approach

Overview

Shading-base

Spatially-Varying Lighting Estimation

Joint Appearance and Geometry Optimization

- surface
- albedo
- image formation model

High-Quality 3D Reconstruction

RGB-D Data

Example: Fountain dataset

- 1086 RGB-D frames
- Sensor:
 - Depth 640x480px
 - Color 1280x1024px
 - ~10 Hz
 - Primesense

• Poses estimated using Voxel Hashing

Approach

Overview

Shading-based Refinement (Shape-from-Shading)

> Spatially-Varying Lighting Estimation

Joint Appearance and Geometry Optimization

- surface
- albedo
- image formation model

High-Quality 3D Reconstruction

Temporal view sampling / filtering

Volumetric 3D model representation

• Voxel grid: dense (e.g. KinectFusion) or sparse (e.g. Voxel Hashing)

"A volumetric method for building complex models from range images", Curless and Levoy, SIGGRAPH 1996.

Volumetric 3D model representation

- Voxel grid: dense (e.g. KinectFusion) or sparse (e.g. Voxel Hashing)
- Each voxel stores:
 - Signed Distance Function (SDF): signed distance to closest surface
 - Color values
 - Weights

 $D(\mathbf{x}) < 0$ $D(\mathbf{x}) = 0$ $D(\mathbf{x}) > 0$

"A volumetric method for building complex models from range images", Curless and Levoy, SIGGRAPH 1996.

Fusion of depth maps

• Integrate depth maps into SDF with their estimated camera poses

- Integrate depth maps into SDF with their estimated camera poses
- Voxel updates using weighted average

- Integrate depth maps into SDF with their estimated camera poses
- Voxel updates using weighted average

- Integrate depth maps into SDF with their estimated camera poses
- Voxel updates using weighted average

- Integrate depth maps into SDF with their estimated camera poses
- Voxel updates using weighted average

- Integrate depth maps into SDF with their estimated camera poses
- Voxel updates using weighted average
- Extract ISO-surface with Marching Cubes (triangle mesh)

Temporal view sampling / filtering

Approach

Overview

Shading-based Refinement (Shape-from-Shading)

> Spatially-Varying Lighting Estimation

Joint Appearance and Geometry Optimization

- surface
- albedo
- image formation model

High-Quality 3D Reconstruction

Keyframe Selection

• Compute per-frame blur score (for color image)

Frame 81

Frame 84

• Select frame with best score within a fixed size window as keyframe

"The blur effect: perception and estimation with a new no-reference perceptual blur metric", Crete et al., SPIE 2007.

Sampling / Filtering

Sampling of voxel observations

- Sample from selected keyframes only
- Collect observations for voxel in input views:

$$c_i^v = \mathcal{C}_i(\pi(\mathcal{T}_i^{-1}\boldsymbol{v}_{iso})).$$

Sampling / Filtering

Sampling of voxel observations

- Sample from selected keyframes only
- Collect observations for voxel in input views:

$$c_i^v = \mathcal{C}_i(\pi(\mathcal{T}_i^{-1}\boldsymbol{v}_{\mathrm{iso}})).$$

Voxel center transformed and projected into input view

Sampling / Filtering

Sampling of voxel observations

- Sample from selected **keyframes only**
- Collect observations for voxel in input views:

$$c_i^{\upsilon} = \mathcal{C}_i(\pi(\mathcal{T}_i^{-1}\boldsymbol{v}_{\mathrm{iso}})).$$

Voxel center transformed and projected into input view

• Observation weights: view-dependent on normal and depth $\cos(\theta)$

$$w_i^{\boldsymbol{v}} = \frac{\cos(\theta)}{d^2}$$

 Filter observations: keep only best 5 observations by weight

Reconstruction

Input keyframes

Approach

Overview

Double-hierarchical (coarse-to-fine: SDF Volume / RGB-D)

Shading-based Refinement (Shape-from-Shading)

> Spatially-Varying Lighting Estimation

Joint Appearance and Geometry Optimization

- surface
- albedo
- image formation model

High-Quality 3D Reconstruction

Temporal view sampling / filtering

• Shading equation:

$$\mathbf{B}(oldsymbol{v}) = \mathbf{a}(oldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m(\mathbf{n}(oldsymbol{v})),$$

• Shading equation:

surface normal $\mathbf{B}(\boldsymbol{v}) = \mathbf{a}(\boldsymbol{v}) \sum_{k=1}^{b^2} l_m H_m[\mathbf{n}(\boldsymbol{v})],$ m=1

• Shading equation:

$$\mathbf{B}(\boldsymbol{v}) = \mathbf{a}(\boldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m[\mathbf{n}(\boldsymbol{v})],$$

- Shading-based refinement:
 - Intuition: high-frequency changes in surface geometry \rightarrow shading cues in input images

- Shading-based refinement:
 - Intuition: high-frequency changes in surface geometry \rightarrow shading cues in input images
 - Estimate **lighting** given **surface** and **albedo** (intrinsic material properties)

- Shading-based refinement:
 - Intuition: high-frequency changes in surface geometry \rightarrow shading cues in input images
 - Estimate **lighting** given **surface** and **albedo** (intrinsic material properties)
 - Estimate surface and albedo given the lighting: minimize difference between estimated shading and input luminance

Approach

Overview

Temporal view sampling / filtering

Spatially-Varying Lighting Estimation

Joint Appearance and Geometry Optimization

- image formation model

surface

albedo

Spherical Harmonics (SH)

- Encode incident lighting for a given surface point
- Smooth for Lambertian surfaces

Spherical Harmonics (SH)

- Encode incident lighting for a given surface point
- Smooth for Lambertian surfaces
- SH Basis functions *H_m* parametrized by **unit normal** *n*

$$\mathbf{B}(oldsymbol{v}) = \mathbf{a}(oldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m(\mathbf{n}(oldsymbol{v}))$$

Spherical Harmonics (SH)

- Encode incident lighting for a given surface point
- Smooth for Lambertian surfaces
- SH Basis functions H_m parametrized by **unit normal** n $\mathbf{B}(\boldsymbol{v}) = \mathbf{a}(\boldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m(\mathbf{n}(\boldsymbol{v}))$
- Good approx. using only 9 SH basis functions (2nd order)

0

1

Spherical Harmonics (SH)

- Encode incident lighting for a given surface point
- Smooth for Lambertian surfaces
- SH Basis functions H_m parametrized by unit normal n $\mathbf{B}(\boldsymbol{v}) = \mathbf{a}(\boldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m(\mathbf{n}(\boldsymbol{v}))$
- Good approx. using only 9 SH basis functions (2nd order)
- Estimate SH coefficients: $E_{\text{light}}(\mathbf{l}) = \sum_{\mathbf{v} \in \mathbf{D}_0} (B(\mathbf{v}) \mathbf{I}(\mathbf{v}))^2$

ZX

1

 $3z^2 - 1$

0

VZ

-1

xy

-2

0

1

Spherical Harmonics (SH)

- Encode incident lighting for a given surface point
- Smooth for Lambertian surfaces
- SH Basis functions H_m parametrized by unit normal n $\mathbf{B}(\boldsymbol{v}) = \mathbf{a}(\boldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m(\mathbf{n}(\boldsymbol{v}))$
- Good approx. using only 9 SH basis functions (2nd order)
- Estimate SH coefficients: $E_{\text{light}}(\mathbf{l}) = \sum_{\mathbf{v} \in \mathbf{D}_0} (B(\mathbf{v}) \mathbf{I}(\mathbf{v}))^2$
- Shortcoming: purely directional → cannot represent scene lighting for all surface points simultaneously

0

1

Subvolume Partitioning

Subvolume Partitioning

 Partition SDF volume into subvolumes

Subvolume Partitioning

- Partition SDF volume into subvolumes
- Estimate independent SH coefficients for each subvolume

Subvolume Partitioning

- Partition SDF volume into subvolumes
- Estimate independent SH coefficients for each subvolume
- Obtain **per-voxel SH coefficients** through tri-linear interpolation

Joint Optimization

Joint Optimization

• Estimate SVSH coefficients for all subvolumes jointly:

$$E_{\text{lighting}}(\boldsymbol{l}_1,\ldots,\boldsymbol{l}_K) = E_{\text{appearance}} + \lambda_{\text{diffuse}} E_{\text{diffuse}}.$$

Joint Optimization

• Estimate SVSH coefficients for all subvolumes jointly:

$$E_{\text{lighting}}(\boldsymbol{l}_1,\ldots,\boldsymbol{l}_K) = E_{\text{appearance}} + \lambda_{\text{diffuse}} E_{\text{diffuse}}.$$

Data term:

$$E_{\text{appearance}} = \sum_{\boldsymbol{v} \in \mathbf{D}_0} (\mathbf{B}(\boldsymbol{v}) - \mathbf{I}(\boldsymbol{v}))^2.$$

Similarity between estimated shading and input luminance

Joint Optimization

• Estimate SVSH coefficients for all subvolumes jointly:

$$E_{\text{lighting}}(\boldsymbol{l}_1,\ldots,\boldsymbol{l}_K) = E_{\text{appearance}} + \lambda_{\text{diffuse}} E_{\text{diffuse}}.$$

Data term:

$$E_{\text{appearance}} = \sum_{\boldsymbol{v} \in \mathbf{D}_0} (\mathbf{B}(\boldsymbol{v}) - \mathbf{I}(\boldsymbol{v}))^2.$$

Similarity between estimated shading and input luminance

Laplacian regularizer:

$$E_{\text{diffuse}} = \sum_{s \in \mathcal{S}} \sum_{r \in \mathcal{N}_s} (\boldsymbol{l}_s - \boldsymbol{l}_r)^2.$$

Smooth illumination changes

Approach

Overview

Shading-based Refinement (Shape-from-Shading)

> Spatially-Varying Lighting Estimation

Joint Appearance and Geometry Optimization

- surface
- albedo
- image formation model

Temporal view sampling / filtering

Shading-based SDF optimization

• Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$E_{\text{scene}}(\mathcal{X}) = \sum_{\boldsymbol{v} \in \tilde{\mathbf{D}}_0} \lambda_g E_g + \lambda_v E_v + \lambda_s E_s + \lambda_a E_a$$

with $\mathcal{X} = (\mathcal{T}, \tilde{\mathbf{D}}, \mathbf{a}, f_x, f_y, c_x, c_y, \kappa_1, \kappa_2, \rho_1)$

Shading-based SDF optimization

• Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$\begin{split} E_{\text{scene}}(\mathcal{X}) &= \sum_{\boldsymbol{v} \in \tilde{\mathbf{D}}_0} \lambda_g E_g + \lambda_v E_v + \lambda_s E_s + \lambda_a E_a \\ & \text{with } \mathcal{X} = (\mathcal{T}, \tilde{\mathbf{D}}, \mathbf{a}, f_x, f_y, c_x, c_y, \kappa_1, \kappa_2, \rho_1) \end{split}$$

Gradient-based shading constraint (data term)

Shading-based SDF optimization

• Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$\begin{split} E_{\text{scene}}(\mathcal{X}) &= \sum_{\boldsymbol{v} \in \tilde{\mathbf{D}}_0} \lambda_g E_g + \lambda_v E_{\boldsymbol{v}} + \lambda_s E_s + \lambda_a E_a \\ & \text{with } \mathcal{X} = (\mathcal{T}, \tilde{\mathbf{D}}, \mathbf{a}, f_x, f_y, c_x, c_y, \kappa_1, \kappa_2, \rho_1) \end{split}$$

Gradient-based shading constraint (data term)

Volumetric regularizer: smoothness in distance values (Laplacian)

$$E_v(\boldsymbol{v}) = (\Delta \tilde{\mathbf{D}}(\boldsymbol{v}))^2$$

Shading-based SDF optimization

• Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$E_{\text{scene}}(\mathcal{X}) = \sum_{\boldsymbol{v}\in\tilde{\mathbf{D}}_0} \lambda_g E_g + \lambda_v E_v + \lambda_s E_s + \lambda_a E_a$$

with $\mathcal{X} = (\mathcal{T}, \tilde{\mathbf{D}}, \mathbf{a}, f_x, f_y, c_x, c_y, \kappa_1, \kappa_2, \rho_1)$

Gradient-based shading constraint (data term)

Volumetric regularizer: smoothness in distance values (Laplacian) Surface Stabilization constraint: stay close to initial distance values

$$E_s(\boldsymbol{v}) = (\tilde{\mathbf{D}}(\boldsymbol{v}) - \mathbf{D}(\boldsymbol{v}))^2$$

Shading-based SDF optimization

• Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$E_{\text{scene}}(\mathcal{X}) = \sum_{\boldsymbol{v}\in\tilde{\mathbf{D}}_0} \lambda_g E_g + \lambda_v E_v + \lambda_s E_s + \lambda_a E_a$$

with $\mathcal{X} = (\mathcal{T}, \tilde{\mathbf{D}}, \mathbf{a}, f_x, f_y, c_x, c_y, \kappa_1, \kappa_2, \rho_1)$

Gradient-based shading constraint (data term)

Volumetric regularizer: smoothness in distance values (Laplacian) Surface Stabilization constraint: stay close to initial distance values Albedo regularizer: constrain albedo changes based on chromaticity (Laplacian)

$$E_a(\boldsymbol{v}) = \sum_{\boldsymbol{u} \in \mathcal{N}_{\boldsymbol{v}}} \phi(\boldsymbol{\Gamma}(\boldsymbol{v}) - \boldsymbol{\Gamma}(\boldsymbol{u})) \cdot (\mathbf{a}(\boldsymbol{v}) - \mathbf{a}(\boldsymbol{u}))^2$$

Shading Constraint (data term)

• Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\boldsymbol{v}) = \sum_{\mathcal{I}_i \in \mathcal{V}_{\text{best}}} w_i^{\boldsymbol{v}} \| \nabla \mathbf{B}(\boldsymbol{v}) - \nabla \mathcal{I}_i(\pi(v_i)) \|_2^2$$

Shading Constraint (data term)

• Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\boldsymbol{v}) = \sum_{\mathcal{I}_i \in \mathcal{V}_{\text{best}}} w_i^{\boldsymbol{v}} \| \nabla \mathbf{B}(\boldsymbol{v}) - \nabla \mathcal{I}_i(\pi(v_i)) \|_2^2$$

Best views for voxel and respective view-dependent weights

Shading Constraint (data term)

 Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\boldsymbol{v}) = \sum_{\mathcal{I}_i \in \mathcal{V}_{\text{best}}} w_i^{\boldsymbol{v}} \| \nabla \mathbf{B}(\boldsymbol{v}) - \nabla \mathcal{I}_i(\pi(v_i)) \|_2^2$$

Best views for voxel and respective view-dependent weights

Shading: allows for optimization of surface (through normal) and albedo

Shading Constraint (data term)

• Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\boldsymbol{v}) = \sum_{\mathcal{I}_i \in \mathcal{V}_{\text{best}}} w_i^{\boldsymbol{v}} \| \nabla \mathbf{B}(\boldsymbol{v}) - \nabla \mathcal{I}_i(\pi(v_i)) \|_2^2$$

Best views for voxel and respective view-dependent weights

- Shading: allows for optimization of surface (through normal) and albedo
- Voxel center transformed and projected into input view

Shading Constraint (data term)

• Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\boldsymbol{v}) = \sum_{\mathcal{I}_i \in \mathcal{V}_{\text{best}}} ||\nabla \mathbf{B}(\boldsymbol{v}) - \nabla \mathcal{I}_i(\pi(v_i))|_2^2$$

Best views for voxel and respective view-dependent weights

- Shading: allows for optimization of surface (through normal) and albedo
- Voxel center transformed and projected into input view
- Sampling: allows for optimization of camera poses and camera intrinsics

Recolorization

Optimal colors

• Recompute voxel colors after optimization at each level

Recolorization

Optimal colors

- Recompute voxel colors after optimization at each level
- Sampling
 - Sample from **keyframes only**
 - Collect, weight and filter observations

Recolorization

Optimal colors

- Recompute voxel colors after optimization at each level
- Sampling
 - Sample from keyframes only
 - Collect, weight and filter observations
- Weighted average of observations:

$$c_{\boldsymbol{v}}^* = \operatorname*{arg\,min}_{c_{\boldsymbol{v}}} \sum_{(c_i^{\boldsymbol{v}}, w_i^{\boldsymbol{v}}) \in \mathcal{O}_v} w_i^{\boldsymbol{v}} (c_{\boldsymbol{v}} - c_i^{\boldsymbol{v}})^2.$$

- Motivation & State-of-the-art
- Approach
- Results
- Conclusion

Ground Truth: Geometry

Frog (synthetic)

Ground Truth: Geometry

Frog (synthetic)

Ground Truth: Geometry

Frog (synthetic)

Ground Truth: Quantitative Results

Frog (synthetic)

- Generated synthetic RGB-D dataset (noise on depth and camera poses)
- Quantitative surface accuracy evaluation
- Color coding: absolute distances (ground truth)

Zollhöfer et al. 15

Ground Truth: Quantitative Results

Frog (synthetic)

- Generated synthetic RGB-D dataset (noise on depth and camera poses)
- Quantitative surface accuracy evaluation
- Color coding: absolute distances (ground truth)

Ours

Zollhöfer et al. 15

Ground Truth: Quantitative Results

Frog (synthetic)

- Generated synthetic RGB-D dataset (noise on depth and camera poses)
- Quantitative surface accuracy evaluation
- Color coding: absolute distances (ground truth)

Ours

Zollhöfer et al. 15

Mean absolute deviation:

- Ours: 0.222mm (std.dev. 0.269mm)
- Zollhöfer et al: 0.278mm (std.dev. 0.299mm)
 - \rightarrow 20.14% more accurate

Relief (geometry)

Input Color

Fusion

Zollhöfer et al. 15

Ours

Fountain (appearance)

Input Color

Fusion

Zollhöfer et al. 15

Ours

Lion

Input Color

Geometry (ours)

Fusion

Ours

Fusion

Ours

100

Tomb Statuary

Input Color

Geometry (ours)

Fusion

Ours

Appearance (ours)

Gate

Input Color

Appearance (ours)

Hieroglyphics

Input Color

Appearance (ours)

103

\bigcirc **Qualitative Results** Bricks Geometry (ours) Input Color Appearance (ours)

Fusion104

Ours

Luminance

Luminance

Albedo

Shading

 $\mathbf{B}_{ ext{diff}} = |\mathbf{B}(oldsymbol{v}) - \mathbf{I}(oldsymbol{v})|$

Global SH

Luminance

Shading

 $\mathbf{B}_{ ext{diff}} = |\mathbf{B}(oldsymbol{v}) - \mathbf{I}(oldsymbol{v})|$

Global SH

SVSH

108

- Motivation & State-of-the-art
- Approach
- Results
- Conclusion

Conclusion

- High-Quality 3D Reconstruction of Geometry and Appearance
 - Temporal view sampling & filtering techniques
 - Spatially-Varying Lighting estimation
 - Joint optimization of surface & albedo (SDF) and image formation model
 - Optimized texture as by-product

Conclusion

- High-Quality 3D Reconstruction of Geometry and Appearance
 - Temporal view **sampling & filtering** techniques
 - Spatially-Varying Lighting estimation
 - Joint optimization of surface & albedo (SDF) and image formation model
 - Optimized texture as by-product

Thank you!

Questions?

Robert Maier

Technical University of Munich Computer Vision Group

robert.maier@in.tum.de https://vision.in.tum.de/members/maierr

