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Abstract The training of deep-learning-based 3D object detectors re-
quires large datasets with 3D bounding box labels for supervision that
have to be generated by hand-labeling. We propose a network archi-
tecture and training procedure for learning monocular 3D object de-
tection without 3D bounding box labels. By representing the objects
as triangular meshes and employing differentiable shape rendering, we
define loss functions based on depth maps, segmentation masks, and
ego- and object-motion, which are generated by pre-trained, off-the-shelf
networks. We evaluate the proposed algorithm on the real-world KITTI
dataset and achieve promising performance in comparison to state-of-the-
art methods requiring 3D bounding box labels for training and superior
performance to conventional baseline methods.

Keywords: 3D object detection, differentiable rendering, autonomous
driving

1 Introduction

Three-dimensional object detection is a crucial component of many autonomous
systems because it enables the planning of collision-free trajectories. Deep-
learning-based approaches have recently shown remarkable performance [33] but
require large datasets for training. More specifically, the detector is supervised
with 3D bounding box labels which are obtained by hand-labeling LiDAR point
clouds [10]. On the other hand, methods that optimize pose and shape of individ-
ual objects utilizing hand-crafted energy functions do not require 3D bounding
box labels [8,32]. However, these methods cannot benefit from training data and
produce worse predictions in our experiments. To leverage deep learning and
overcome the need for hand-labeling, we thus introduce a training scheme for
monocular 3D object detection which does not require 3D bounding box labels
for training.

We build upon Pseudo-LiDAR [33], a recent supervised 3D object detector
that utilizes a pre-trained image-to-depth network to back-project the image into
a point cloud and then applies a 3D neural network. To replace the direct su-
pervision by 3D bounding box labels, our method additionally uses 2D instance
segmentation masks, as well as, ego- and object-motion as inputs during training.
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Figure 1. We propose a monocular 3D vehicle detector that requires no 3D
bounding box labels for training. The right image shows that the predicted
vehicles (colored shapes) fit the ground truth bounding boxes (red). Despite the
noisy input depth (lower left), our method is able to accurately predict the
3D poses of vehicles due to the proposed fully differentiable training scheme.
We additionally show the projections of the predicted bounding boxes (colored
boxes, upper left).

We show that our method works with off-the-shelf, pre-trained networks: Mask
R-CNN [13] for segmentation and struct2depth [4] for motion estimation. There-
fore, we introduce no additional labeling requirements for training in comparison
to Pseudo-LiDAR. During inference the motion network is not required.

Due to the Pseudo-LiDAR-based architecture, our approach can utilize
depth maps from mono-to-depth, or stereo-to-depth methods, which can be self-
supervised or supervised. We show experiments for all four combinations. For
depth maps generated by a self-supervised mono-to-depth network [11], only
Mask R-CNN needs to be trained supervisedly and we use a model pre-trained
on the general COCO dataset [22], therefore avoiding any supervision on the
KITTI dataset.

1.1 Related Work

Object Detection. Two-dimensional object detection is a fundamental task
in computer vision, where two-stage, CNN-based detectors [29] have shown im-
pressive performance. Mask R-CNN [13] extends this approach to include the
prediction of instance segmentation masks with high accuracy.

In contrast, image-based 3D object detection is still an open problem because
depth information has to be inferred from 2D image data. Approaches based on
per-instance optimization minimize a hand-crafted energy function for each ob-
ject individually; the function encodes prior knowledge about pose and shape and
considers input data, e.g., the back-projection of an estimated depth map [8],
an image-gradient-based fitness measure [38], or the photometric constraint for
stereo images together with 2D segmentation masks [32]. Initial deep-learning-
based methods for stereo images [6] and monocular images [5] generate object
proposals which are then ranked by a neural network. Subsequent approaches
employ geometric constraints to lift 2D detections into 3D [25,27]. Kundu et
al. [19] propose to compare the predicted pose and shape of each object to the
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ground truth depth map and segmentation mask, which yields two additional
loss terms during training. They employ rendering to define the loss function and
approximate the gradient using finite differences. Their approach relies on 3D
bounding box labels for supervision and uses the additional loss terms to improve
the final performance. Li et al. [21] propose Stereo-RCNN which combines deep
learning and per-instance optimization for object detection from stereo images.
Similar to our approach, Stereo-RCNN does not supervise the 3D position using
3D bounding box labels. In contrast to our method, they use the 3D bound-
ing box labels to directly supervise the 3D dimensions, the viewpoint, and the
perspective keypoint. Replacing the 3D bounding box labels by estimated 3D
dimensions, viewpoints, and perspective keypoints is a non-trivial extension of
their work. Furthermore, it is not studied how well their algorithm would handle
the inevitable noise in the estimated 3D dimensions, viewpoints, and perspective
keypoints if they are not computed from the highly accurate ground truth la-
bels. Moreover, Stereo-RCNN is designed specifically for stereo images, while the
proposed method is designed for monocular images and can be easily extended
to the stereo setting (cf. section 3). Wang et al. [33] back-project the depth
map obtained from an image-to-depth network to a point cloud and then use
networks initially designed for LiDAR data [26,18] for detection. Their method,
Pseudo-LiDAR, showed that representing depth information in the form of point
clouds is advantageous and has inspired our work.

Learning Without Direct Supervision. In the context of autonomous
driving, self-supervised learning has been used successfully for depth predic-
tion [11,35], as well as depth and ego-motion prediction [4]. Using only 2D su-
pervision for 3D estimation is common in object reconstruction where the focus
lies on estimating pose and shape for a diverse class of objects, but networks
are commonly trained and evaluated on artificial datasets without noise. Gen-
erally, neural networks are trained to extract the 3D shape of an object from a
single image. Initial works [34,17] use multi-view images with known viewpoints
to define a loss based on the ground truth segmentation mask in each image
and the differentiably rendered shape. Subsequent methods [16,14] overcome the
dependence on known poses by including the pose into the prediction pipeline
and thus require only 2D supervision.

The aforementioned approaches rely on rendering a 2D image from the 3D
representation to define loss functions based on the input. To enable training,
the renderer has to be differentiable with respect to the 3D representation. Loper
and Black [23] proposed a mesh-based, differentiable renderer called OpenDR,
which was extended in [14]. Other methods use approximations to ray casting for
voxel volumes [34], differentiable point clouds [16], or differentiable rasterization
for triangular meshes [17].

1.2 Contribution

We propose a monocular 3D vehicle detector that is trained without 3D bound-
ing box labels by leveraging differentiable shape rendering. The major inputs for
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Figure 2. The proposed model contains a single-image network and a multi-
image network extension. The single-image network back-projects the input
depth map estimated from the image into a point cloud. A Frustum PointNet
encoder predicts the pose and shape of the vehicle which are then decoded into a
predicted 3D mesh and segmentation mask through differentiable rendering. The
predictions are compared to the input segmentation mask and back-projected
point cloud to define two loss terms. The multi-image network architecture takes
three temporally consecutive images as the inputs, and the single-image network
is applied individually to each image. Our network predicts a depth map for the
middle frame based on the vehicle’s pose and shape. A pre-trained network pre-
dicts ego-motion and object-motion from the images. The reconstruction loss is
computed by differentiably warping the images into the middle frame.

our model are 2D segmentation masks and depth maps, which we obtain from
pre-trained, off-the-shelf networks. Therefore, our method does not require 3D
bounding box labels for supervision. Two-dimensional ground truth and LiDAR
point clouds are only required for training the pre-trained networks. We thus
overcome the need for hand-labeled datasets which are cumbersome to obtain
and contribute towards the wider applicability of 3D object detection. We train
and evaluate the detector on the KITTI object detection dataset [10]. The ex-
periments show that our model achieves comparable results to state-of-the-art
supervised monocular 3D detectors despite not using 3D bounding box labels
for training. We further show that replacing the input monocular depth with
stereo depth yields competitive stereo 3D detection performance, which shows
the generality of our 3D detection framework.

2 Learning 3D Vehicle Detection without 3D Bounding
Box Labels

The proposed model consists of a single-image network that can learn from
single, monocular images and a multi-image extension that additionally learns
from temporally consecutive frames. Figure 2 depicts the proposed architecture.
We utilize pre-trained networks to compute depth maps, segmentation masks,
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(a) V 0 + B0 (b) V 0 + B1 (c) V 0 + B2

Figure 3. Shape manifold visualization. The mean shape is shown in red, and
the deformed meshes are shown as black wireframes. The resulting shape space
can represent longer (3a), higher (3b), and smaller (3c) cars.

and ego- and object-motion, which are used as inputs to the network and for the
loss functions during training. During inference only the single-image network
and the pre-trained image-to-depth and segmentation networks are required.

2.1 Shape Representation

We use a mesh representation given by a mean mesh together with linear ver-
tex displacements which are obtained from the manifold proposed in [8] by a
semi-manual process and are available on the project page. The mean vertex po-
sitions are denoted V 0 ∈ RN×3, the K vertex displacement matrices are denoted
Bk ∈ RN×3, k = 1, . . . ,K, the shape coefficients are denoted z = (z1, . . . , zK)
and the deformed vertex positions in the canonical coordinate system are de-
noted V def ∈ RN×3. The deformed vertex positions are the linear combination

V def = V 0 +

K∑
k=1

zk ·Bk . (1)

2.2 Single-Image Network

The input depth map is back-projected into a point cloud, which decouples
the architecture from the depth source as in [33]. The point cloud is filtered
with the object segmentation mask to obtain the object point cloud. For depth
maps from monocular images, the object point cloud frequently has outliers at
occlusion boundaries, which are filtered out based on their depth values.

Afterward, a Frustum PointNet encoder [26] predicts the position x ∈ R3,
orientation ry ∈ [0, 2π), and shape z ∈ RK of the vehicle. The shape coefficients
z are applied in a canonical, object-attached coordinate system to obtain the
deformed mesh based on our proposed shape manifold (subsection 2.1) using
Equation 1. The deformed mesh is rotated by ry around the y-axis and translated
by x to obtain the mesh in the reference coordinate system.

The deformed mesh in the reference coordinate system is rendered differen-
tiably to obtain a predicted segmentation mask Sobj and a predicted depth map



6 Lukas Koestler, Nan Yang, Rui Wang, and Daniel Cremers

Ours with posecd Ours without posecd

Figure 4. Qualitative results with and without posecd (cf. section 2.3). We show
the ground truth (red) and the predictions (green). Without the proposed posecd
the model learns to tightly fit the point cloud which leads to worse results due
to errors in the point cloud. With posecd the segmentation loss can correct the
erroneous position of the point cloud and the predicted position is more accurate.

Dobj . The rendered depth map Dobj that incorporates the predicted pose and
shape of the vehicle is used only in the multi-image network. For the image areas
which do not belong to the vehicle, as defined by the input segmentation mask,
we utilize the input depth map as the background depth and render the depth
from the deformed mesh otherwise. For rendering the predicted depth map and
segmentation mask we utilize a recent implementation [14] of the differentiable
renderer proposed in [23]. Additional details are in the supplementary material.

2.3 Loss Functions

In order to train without 3D bounding box labels we use three losses, the segmen-
tation loss Lseg, the chamfer distance Lcd, and the photometric reconstruction
loss Lrec. The first two are defined for single images and the photometric recon-
struction loss relies on temporal photo-consistency for three consecutive frames
(Figure 2). The total loss is the weighted sum of the single image loss for each
frame and the reconstruction loss

Ltot = wrec · Lrec +
1

3
·
∑
t

Lt
single , (2)

where the single image loss is the weighted sum of the segmentation loss and
chamfer distance

Lsingle = wcd · Lcd + wseg · Lseg . (3)

To capture multi-scale information, the segmentation and reconstruction loss
are computed for image pyramids [3] with eight levels, which we form by repeat-
edly applying a 5 × 5 binomial kernel with stride two. For each pyramid level
the loss values are the mean over the pixel-wise loss values which ensures equal
weighting for each level.



Learning 3D Vehicle Detection without 3D Bounding Box Labels 7

O
ur

s 
N

o 
3D

 B
bo

x 
La

be
ls

M
on

o3
D

 
3D

 B
bo

x 
La

be
ls

M
on

oG
R

N
et

 
3D

 B
bo

x 
La

be
ls

Figure 5. Qualitative comparison of MonoGRNet [27] (first row), Mono3D [5]
(second row), and our method (third row) with depth maps from BTS [20]. We
show ground truth bounding boxes for cars (red), predicted bounding boxes
(green), and the back-projected point cloud. In comparison to Mono3D, the
prediction accuracy of the proposed approach is increased specifically for further
away vehicles. As in the quantitative evaluation (cf. Table 1), the performance
of MonoGRNet and our model is comparable.

Segmentation Loss. The segmentation loss penalizes the difference between
the input segmentation mask Sin and the differentiably rendered segmentation
mask Sobj using the squared L2 norm.

Lseg = ||Sin − Sobj ||2 . (4)

Chamfer Distance. The chamfer distance for point clouds, which was used in
the context of machine learning by [9], penalizes the 3D distance between two
point clouds. Its original formulation is symmetric w.r.t. the two point clouds. In
contrast, the situation analyzed in this paper does not posses this symmetry. For
each point ri in the input object point cloud, there must exist a corresponding
vertex v in the deformed mesh, while due to occlusion or truncation, the reverse
is not true. Therefore, we use a non-symmetric version of the chamfer distance

Lcd =
1

M

∑
i

min
j
ρ(||ri − vj ||) . (5)

We employ the Huber loss ρ : R→ R+
0 to gain robustness against outliers.

For depth maps obtained from monocular image-to-depth networks, we no-
tice weak performance of the chamfer distance (cf. Table 3) due to a high bias
in the position of the input object point cloud, which is caused by the global
scale ambiguity (cf. Figure 4). To use the orientation information captured in
the object point cloud without deteriorating the position estimate, we intro-
duce posecd. The network outputs an auxiliary position xaux, and the chamfer
distance is then calculated using this position

Lcd = Lcd(xaux, ry) . (6)
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Table 1. Result for the proposed KITTI validation set. We report the average
precision (AP) in percent for the car category in the bird’s-eye view (BEV) and
in 3D. The AP is the average over 40 values as introduced in [31]. Our method
convincingly outperforms the supervised baseline method Mono3D and shows
promising performance in comparison to a state-of-the-art supervised method
MonoGRNet.

Method Input
Without
3D Bbox

APBEV, 0.7 AP3D, 0.7

Easy Mode Hard Easy Mode Hard

Ours Mono X 19.23 9.60 5.34 6.13 3.10 1.70
MonoGRNet [27] Mono 23.07 16.37 10.05 13.88 9.01 5.67
Mono3D [5] Mono 1.92 1.13 0.77 0.40 0.21 0.17

The auxiliary position xaux is predicted by a separate network head. We cut
the gradient flow between the main network and the additional head to not
influence the main network, which necessitates the use of another loss term that
back-propagates through the predicted position x.

Multi-Image Reconstruction Loss. The multi-image network is inspired
by the recent success of self-supervised depth prediction from monocular im-
ages [4,11], which relies on differentiably warping temporally consecutive images
into a common frame to define the reconstruction loss. The single-image net-
work is applied to three consecutive images It−1, It, It+1 of the same vehicle
and the reconstruction loss is defined in the middle frame. The reconstruction
loss is formulated as in [4] and we use their pre-trained network to estimate the
ego-motion and object motion required for warping.

Hindsight Loss. To overcome the multi-modality of the loss w.r.t. the orienta-
tion of the vehicle, we apply the hindsight loss mechanism [12], which has been
frequently used in the context of self-supervised object reconstruction [16,14].
The network predicts orientation hypotheses in L bins and the hindsight loss is
the minimum of the total loss over the hypotheses.

3 Experiments

We quantitatively compare our method with other state-of-the-art monocular
3D detection methods on the publicly available KITTI 3D object detection
dataset [10]. Note that since our method is the first monocular 3D detector
trained without 3D bounding box labels, the compared-against methods are su-
pervised methods that are trained with ground truth 3D bounding box labels.
We conduct an extensive ablation study on the different loss terms to show
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Figure 6. Qualitative comparison of ShapePriors [8] (first row) and our approach
(second row) with depth maps from BTS. We show ground truth bounding boxes
for cars (red), predicted bounding boxes (green), and the back-projected point
cloud. ShapePriors is initialized with detections from 3DOP [6] as in the original
paper, which leads to false positives (left column). For the quantitative evalua-
tion (cf. subsection 3.2) we control for this difference and our approach still shows
better performance. The comparison shows that learning can produce more ro-
bust and accurate prediction than per-instance optimization. Both methods do
not require 3D bounding box labels for training.

the efficacy of each proposed component. Because the accuracy of the input
point cloud plays a crucial role for the proposed model, we show experiments
with depth maps estimated from different methods. Finally, we compare against
methods based on per-instance optimization.

KITTI Object Detection. The KITTI dataset consists of sequences that are
used for numerous benchmarks, e.g. 3D object detection and depth prediction.
This leads to an overlap of the common validation set for object detection [6]
and the popular Eigen [7] train set for monocular depth estimation. The overlap
was already noted by [33]. Unlike in [33], we use a subset of the validation set
that has no sequence-level overlap with the Eigen training set or the KITTI 2015
stereo training set. Following works can integrate pre-trained mono-to-depth and
stereo-to-depth networks directly. The split files can be found on the project
page. Results on the standard validation set [6] are given in the supplementary
material and they unsurprisingly show better performance than on the proposed
split.

For the confidence score we estimate the KITTI category (easy, moderate,
and hard) from the data. We shift and scale the baseline scores 1−Lsingle such
that objects which are estimated to be easy have a higher score than any object
which is estimated to be moderate. The same holds for moderate objects in
comparison to hard objects. This gives a slight improvement in average precision
and details are in the supplementary material.

Pre-Trained Networks. For Mask R-CNN [13] we use the implementation of
[1] and their pre-trained weights on the COCO [22] dataset. For ego- and object-
motion estimation we utilize the official implementation of struct2depth [4] and
their pre-trained weights on the Eigen train split. For depth estimation we use
Monodepth 2 [11], BTS [20], SGM [15], and GA-Net [37]. For Monodepth 2 we
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Table 2. Depth source ablation study. The average precision of the proposed
model improves when using a supervised instead of an unsupervised image-
to-depth method and when using stereo images instead of monocular images.
Our more general method delivers the best performs among methods trained
without 3D bounding box labels, but worse performance as the stereo-specific
Stereo-RCNN which uses partial 3D bounding box information for training. Our
approach clearly improves upon the common baseline 3DOP and the recent Di-
rectShape and TLNet.
Stereo-RCNN does not directly supervise the 3D position, but directly supervises
the 3D bounding box dimensions. Additionally, they compute the viewpoint and
perspective keypoint from the ground truth 3D bounding box label and use
them for supervision and thus require 3D bounding box labels during training.
Replacing the 3D bbox labels by estimated 3D dimensions, viewpoints, and
perspective keypoints is a non-trivial extension of their work.

Method Input
Without
3D Bbox

APBEV, 0.7 AP3D, 0.7

Easy Mode Hard Easy Mode Hard

Ours (Monodepth) Mono X 10.78 5.43 2.99 4.53 2.16 1.17
Ours (BTS) Mono X 19.23 9.60 5.34 6.13 3.10 1.70

Ours (SGM) Stereo X 31.51 15.78 8.76 8.42 4.08 2.23
Ours (GA-Net) Stereo X 68.16 35.82 20.45 38.45 18.78 10.44

Stereo-RCNN [21] Stereo (X) 71.51 53.81 35.56 56.68 38.30 25.45
TLNet [28] Stereo 24.92 17.01 11.25 13.74 9.45 6.13
DirectShape [32] Stereo X 24.91 16.03 10.28 12.60 7.36 4.33
3DOP [6] Stereo 8.72 5.52 3.29 2.68 1.48 1.05

use the official implementation and their pre-trained weights on Zhou’s [39] sub-
set of the Eigen train split; this model is trained with supervision from monoc-
ular images of resolution 1024× 320 and utilizes pre-training on ImageNet [30].
For BTS we use the official implementation and their pre-trained weights on
the Eigen train split. For SGM we use the public implementation provided by
[2] and piecewise linear interpolation in 2D to complete the disparity map. For
GA-Net we use the official implementation and their pre-trained weights on
Scene Flow [24] and the KITTI 2015 stereo training set. For matching consec-
utive segmentation masks we use a similar procedure to [4]; however, we first
warp the segmentation masks into a common frame using optical flow [36].

Evaluation Results. For monocular object detection, we compare to two su-
pervised monocular 3D detection networks: MonoGRNet [27] is a state-of-the-art
monocular detector and Mono3D [5] is a common baseline method. Table 1 shows
the evaluation results. Our results are superior to the ones generated by Mono3D
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Table 3. Ablation study using depth maps from BTS [20]. Using the chamfer dis-
tance without the proposed posecd reduces the accuracy significantly. Learning
pose and shape without 3D bounding box labels is an under-constraint problem
and the performance decreases (cf. last row). Without multi-image training the
performance in the BEV is similar but the performance in 3D is decreased.

Method
APBEV, 0.7 AP3D, 0.7

Easy Mode Hard Easy Mode Hard

Full Model 19.23 9.60 5.34 6.13 3.10 1.70
W/o Lcd 9.75 5.21 2.75 3.50 1.73 0.98
W/o posecd 4.53 2.84 1.58 0.94 0.48 0.26
W/o Lseg 4.22 2.23 1.16 0.76 0.41 0.18
W/o Lrec 19.60 9.48 5.30 4.88 2.26 1.20
W/ Bk 16.02 8.12 4.51 5.24 2.59 1.32

in all categories. While MonoGRNet outperforms our method, the performance
gap is relatively small. This difference is smaller for the easy category than for
the moderate category, which shows that handling distant objects and occlusions
when learning without 3d bounding box labels is challenging.

3.1 Ablation Study

Input Depth. Table 2 shows that the average precision with BTS [20], a su-
pervised mono-to-depth network, is better than the performance with the self-
supervised Monodepth 2 [11], due to the superior depth estimation accuracy.
This leads to the question: Does the performance of the proposed model con-
stantly improve if more accurate depth maps are used as input? When switching
from mono to stereo, better depth maps are estimated, and the AP is dramati-
cally improved, as can be seen in Table 2. Besides, using depth maps from GA-
Net [37], a stereo-to-depth network trained in a supervised fashion, outperforms
using depth maps from the traditional stereo matching algorithm SGM [15] by a
notable margin. In Table 2, we also show the results of state-of-the-art stereo 3D
detectors, Stereo-RCNN [21], DirectShape [32], 3DOP [6], and TLNet [28]. The
proposed approach ranks first among the methods that do not use 3D bounding
box labels for training.

Loss Terms. We demonstrate the significance of using the chamfer distance
together with the proposed posecd in Figure 4 and Table 3. Simultaneously es-
timating pose and shape generally resulted in worse performance and training
instabilities due to the inherent scale ambiguity. The best results we achieved
are obtained with the mean shape – the shape variability of cars within the
KITTI dataset is small and thus a fixed shape is a reasonable approximation.
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More details can be found in the supplementary material. During our experi-
ments, the reconstruction loss in the multi-image setting contributes marginal
improvements, which may be due to the noise in the ego-motion and object-
motion predictions, which were taken from the self-supervised struct2depth [4];
details are included in the supplementary material.

3.2 Comparison with Non-Learning-Based Methods

We choose ShapePriors [8] for comparison because it uses very similar input
data; ShapePriors uses depth maps and initial 3D detections, while our method
uses depth maps and 2D segmentation masks during inference. We compare both
methods using depth maps generated by GA-Net.

The initial 3D detections were taken from 3DOP in the original paper. To
facilitate a fair quantitative comparison, we initialize the position with the me-
dian of the object point cloud in the x and z direction and the minimum in the y
direction. For the orientation and the 2D bounding box we use the ground truth.
Because we require the ground truth label for the orientation initialization and
the segmentation mask for the position initialization, we match segmentation
masks and labels. Thus, the results presented here are not comparable to the
other results within this paper.

Under these conditions, ShapePriors achieves 23.65% APBEV, 0.7, easy and
ours 77.47%. For the qualitative comparison (cf. Figure 6) ShapePriors is initial-
ized with detections from 3DOP [6] as in the original paper. The quantitative
and qualitative comparisons show that per-instance optimization delivers less
robust and accurate predictions than learning. Similarly, the comparison against
DirectShape (cf. Table 2) indicates that learning can extract meaningful priors
from the training data and ultimately deliver superior performance.

4 Conclusion

We propose the first monocular 3D vehicle detection method for real-world
data that can be trained without 3D bounding box labels. By proposing a
differentiable-rendering-based architecture we can train our model from unla-
beled data using pre-trained networks for instance segmentation, depth estima-
tion, and motion prediction. During inference only the instance segmentation and
depth estimation networks are required. Without ground truth labels for train-
ing, we decisively outperform a baseline supervised monocular detector and show
promising performance in comparison to a state-of-the-art supervised method.

Furthermore, we demonstrate the generality of the proposed framework by
using depth maps from a stereo-to-depth network and without further changes
achieving state-of-the-art performance for stereo 3D object detection without 3D
bounding box labels for training. While this paper demonstrates that monocu-
lar 3D object detection without 3D bounding box labels for training is viable,
many directions for future research remain, e.g. the explicit integration of stereo
images, the extension to pedestrians and cyclists, training on large, unlabelled
datasets, or the integration of an occlusion aware segmentation loss.
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