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Abstract— Event cameras are bio-inspired vision sensors
which measure per pixel brightness changes. They offer numer-
ous benefits over traditional, frame-based cameras, including
low latency, high dynamic range, high temporal resolution
and low power consumption. Thus, these sensors are suited
for robotics and virtual reality applications. To foster the
development of 3D perception and navigation algorithms with
event cameras, we present the TUM-VIE dataset. It consists
of a large variety of handheld and head-mounted sequences
in indoor and outdoor environments, including rapid motion
during sports and high dynamic range scenarios. The dataset
contains stereo event data, stereo grayscale frames at 20Hz as
well as IMU data at 200Hz. Timestamps between all sensors are
synchronized in hardware. The event cameras contain a large
sensor of 1280x720 pixels, which is significantly larger than
the sensors used in existing stereo event datasets. We provide
ground truth poses from a motion capture system at 120Hz
during the beginning and end of each sequence, which can be
used for trajectory evaluation. TUM-VIE includes challenging
sequences where state-of-the art visual SLAM algorithms either
fail or result in large drift. Hence, our dataset can help to push
the boundary of future research on event-based visual-inertial
perception algorithms.

I. INTRODUCTION

Event cameras, also known as dynamic vision sensors
(DVS), are passive imaging sensors, which report changes
in the observed logarithmic brightness independently per
pixel. Their main benefits are very high dynamic range
(up to 140dB compared to 60dB of traditional cameras),
high temporal resolution and low latency (in the order of
microseconds), low power consumption and strongly reduced
motion blur [1, 2]. Hence, these novel sensors have the
potential to revolutionize robotic perception. Figure 1 shows
the superior performance of an event camera in low light
conditions.

Due to the novelty of the field, algorithms for event-
based sensors are still immature compared to frame-based
algorithms. Computer vision research in the last fifty years
has strongly profited from publicly available datasets and
benchmarks. To advance research with these novel and
expensive sensors, we introduce the TUM-VIE dataset. It
contains a variety of sequences captured by a calibrated and
hardware-synchronized stereo pair of Prophesee GEN4 CD
sensors with 1280x720 pixels resolution. To our knowledge,
TUM-VIE is the first stereo dataset featuring such a high-
resolution event camera, surpassing other datasets by at least
a factor of ten in the number of event pixels per camera.
In principle, this allows for more detailed reconstructions.
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Germany. {simon.klenk, jason.chui, nikolaus.demmel,
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(a) left visual frame (b) right visual frame

(c) left event frame (d) right event frame

Fig. 1: This scene is captured in low-light conditions outside.
It demonstrates the high dynamic range advantage of the
event camera (bottom row) compared to the visual camera
(top row). It shows all four camera modalities of the sequence
bike-dark at 83.6 seconds recording time. Note that later
in this sequence there is more ambient light present and
hence the visual frames can still be used in computer vision
algorithms. For this visualization, the asynchronous events
are accumulated into frames using an integration time of 5
milliseconds.

More importantly, it enables the evaluation of frame-based
versus event-based algorithms on data with similar, state-
of-the-art resolution. To facilitate this, our setup contains
two hardware-synchronized global shutter cameras of reso-
lution 1024x1024 pixels, 12 bit color depth, known exposure
times and vignette calibration. The IMU provides 3-axis
accelerometer and gyroscope data at 200 Hz. Contrary to
most existing datasets, we provide the calibration of IMU
biases, as well as axis scaling and misalignment similar
to [3]. The timestamps of all sensors are synchronized in
hardware.

TUM-VIE can for example be used to develop algorithms
for localization and mapping (visual odometry and SLAM),
feature detection and tracking, 3D reconstruction, as well as
self-supervised learning and sensor fusion. The availability
of comprehensive datasets combining comparable sensor
modalities to TUM-VIE is quite small. Furthermore, sensor
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characteristics of event camera have greatly improved within
the last decade [1]. Hence, we believe it is important to use
the most recent event camera for a meaningful comparison
with frame-based algorithms.

The main contributions of this paper are:
• We present the first 1 megapixel stereo event dataset

featuring IMU data at 200Hz and stereo global shutter
grayscale frames at 20Hz with known photometric cali-
bration and known exposure times. Timestamps between
all sensors are hardware-synchronized.

• The first stereo event dataset featuring head mounted
sequences (relevant for VR) and sport activities with
rapid and high-speed motions (biking, running, sliding,
skateboarding).

• We propose a new method for event camera calibration
using Time Surfaces.

• We evaluate our dataset with state-of-the-art visual
odometry algorithms. Furthermore, we make all cali-
bration sequences publicly available.

The dataset can be found at:
https://go.vision.in.tum.de/tumvie

II. RELATED WORK

Weikersdorfer et al. [4] present one of the earlier event
datasets, combining data from an eDVS of 128x128 pixels
and an RGB-D sensor in a small number of indoor sequences.
They provide ground truth poses from a motion capture
(MoCap) system, but the total sequence length only amounts
to 14 minutes.

Barrancko et al. [5] provide a dataset which focuses on
evaluation of visual navigation tasks. They use a dynamic
and active pixel vision sensor (DAVIS) which combines event
detection alongside regular frame-based pixels in the same
sensor. However, only 5 degree-of-freedom (DOF) motions
are captured and the ground truth poses are acquired from
wheel odometry which is subject to drift.

The work by Mueggler et al. [6] captures full 6 DOF
motions and precise ground truth by a MoCap system
indoors. The sequences include artificial scenes such as
geometric shapes, posters or cart boxes, but also an urban
environment and an office. Hardware-synchronized grayscale
frames and IMU measurements are provided in addition to
the events. They also present an event camera simulator in
their work. However, the monocular DAVIS 240C merely
captures 240x180 pixels and the total sequence length only
amounts to 20 minutes.

There also exits a small number of related datasets tar-
geting automated driving applications. Binas et al. present
DDD17 [7] as well as the follow-up dataset DDD20 [8]
which feature monocular event data from a DAVIS 346B with
346x260 pixels. The camera is mounted on a car windshield
while driving through various environments and conditions,
for a total of 12 and 51 hours, respectively. Additionally, GPS
data and vehicle diagnostic data such as steering angle and
vehicle speed are provided. Similarly, the dataset by Perot et
al. [9] comprises 14 hours of recording from a car. It includes
labelled bounding boxes for the classes of car, pedestrian

Fig. 2: Sensor setup mounted onto a helmet. The distance
between event camera (bottom) and visual camera (top) is
only 4.49 centimeters for the left and right side of the
stereo rig. The baseline between the visual cameras is 10.86
centimeters, the baseline between the event cameras is 11.84
centimeters. These numbers are obtained from our calibration
algorithm and confirmed by physical measurements.

and two-wheeler. They provide RGB images recorded at 4
megapixels as well as an event stream recorded by the 1
megapixel Prophesee GEN4-CD sensor, which is also used
in this work.

Furthermore, there exit specialised datasets such as the
UZH-FPV Drone Racing Dataset [10], which is targeted for
localization of drones during high speed and high accelera-
tions in 6 DOF. The sensor setup includes a miniDAVIS346
as well as a fisheye stereo camera with 640x480 pixels reso-
lution and hardware-synchronized IMU. In addition, external
ground truth poses of the drone are provided by a laser
tracker system at 20Hz. However, partial tracking failures
during high-acceleration maneuvers are reported. Lee et al.
[11] present the dataset ViViD, which contains sequences for
visual navigation in poor illumination conditions. In addition
to lidar and RGB-D data, they record thermal images with a
resolution of 640x512 pixels at 20Hz. They provide ground
truth poses from a MoCap system indoors and use a state-of-
the-art lidar SLAM system for outdoor ground truth poses.
However, the monocular DAVIS stream features only a
resolution of 240x180 pixels and the timestamps between
the sensors are not synchronized in hardware.

The dataset MVSEC by Zhu et al. [12] as well as the recent
dataset DSEC by Gehrig et al. [13] are most closely related
to our work. Both MVSEC and DSEC contain a lidar sensor
for depth estimation, two frame cameras, two event cameras
as well as a GNSS receiver. DSEC addresses the limitation
of a small camera baseline in MVSEC targeting automated

https://go.vision.in.tum.de/tumvie


driving scenarios. TUM-VIE comes with a number of com-
plementary advantages. First, our event camera provides 10
times more pixels than the DAVIS m346B in MVSEC and
3 times more pixels than the Prophesee Gen3.1 in DSEC.
This can help to study the impact of high resolution data
on algorithmic performance and in principle allows a more
detailed reconstruction. Second, our visual stereo cameras
encompass a largely increased field of view compared to the
VI sensors in MVSEC. Third, in contrast to both MVSEC
and DSEC, we provide a photometric calibration for our
visual cameras, which is beneficial for employing direct VO
methods on the intensity images [14]. Fourth, we provide
calibrated IMU noise parameters which are required for
accurate probabilistic modeling in state estimation algorithms
[3]. The MVSEC dataset features sequences on a hexacopter,
on a car at low speed (12 m/s), and on a motorcycle at high
speed (12-36 m/s) totalling about 60 minutes. However, only
about 6 minutes of handheld indoor recordings are provided.
Similarly, the DSEC dataset contains 53 minutes of outdoor
driving on urban and rural streets. Contrary to that, the TUM-
VIE dataset provides extensive handheld and head-mounted
sequences during walking, running and sports in indoor and
outdoor scenarios and under various illumination conditions,
totalling 48 minutes excluding the calibration sequences.

III. DATASET

A. Sensor Setup

Table I gives an overview of our sensors and their char-
acteristics. The full setup including the attached infrared
markers can be seen in Figure 2. We use the Prophesee
GEN4-CD Evaluation Kit which includes a 1 megapixel
event sensor in a robust casing and a USB 3.0 interface.
The Prophesee GEN4 CD sensor can handle a peak rate of
1 Giga-event per second. In most sequences we have a mean
event rate of a few Mega-events per second.

The MoCap system emits 850nm infrared (IR) light in
order to track the IR-reflective passive markers which are
attached to the rigid body setup. Since the Prophesee GEN4
CD sensor is sensitive to IR light, moving the setup inside the
MoCap room would create undesirable noise events. There-
fore, we place an IR-blocking filter with cutoff frequency of
710nm parallel to the sensor, at a distance of approximately
2 millimeter, see Figure 3. The placement close to the sensor
has the benefit that stray light inside the camera is also
blocked.

B. Sequence Description

Table II gives an overview of the available sequences.
Total recording length amounts to 48 minutes excluding
the calibration sequences. For each day of recording, we
provide a sequence called calib which is used to calibrate
the extrinsic and intrinsic parameters of all cameras. The
sequence called imu-calib is used to obtain the transforma-
tion between the marker coordinate system (infrared markers
for MoCap) and the IMU, as well as to determine the IMU
biases and scaling factors. Furthermore, we provide two

TABLE I: Hardware Specification

Sensor Rate Properties

2x Prophesee GEN4-CD
lens: Foctek M12-5IR

≤ 109 events
s

1280x720 pixels
FOV: 90◦H / 65◦V

up to 124 dB

2x IDS Camera uEye
UI-3241LE-M-GL

lens: Lensagon BM4018S118
20 Hz

1024x1024 pixels
FOV: 101◦H / 76◦V

up to 60 dB
global shutter

IMU Bosch BMI160
integrated on Genuino 101

200 Hz

3D accelerometer
3D gyroscope
up to 60 dB
temperature

MoCap OptiTrack Flex13 120 Hz accurate 6D pose
850nm IR light

Fig. 3: The infrared filter is mounted parallel to the sensor, at
a distance of approximately 2 millimeter. The sensor plane is
located approximately at the 5 millimeter mark of the ruler.

sequences called calib-vignette, which are used to compute
the photometric calibration of the visual cameras.

The first seven sequences in Table II with prefix mocap
contain ground truth poses for the whole trajectory: mocap-
1d-trans contains a simple one dimensional translational
motion, mocap-3d-trans contains a three dimensional trans-
lation and mocap-6dof contains a full 6 DOF motion. All
three sequences show a table containing diverse objects such
as books, multiple similarly looking toy figures and cables.
Most of the the scene is bounded by a calibration pattern
placed behind the table. The sequences mocap-desk and
mocap-desk2 show a loop motion around two different office
desks: mocap-desk shows two computer screens, a keyboard
with some cables and the scene is bounded by a close-by
white wall; mocap-desk2 also shows two screens but the
depth is less strictly bounded and there are also multiple
calibration patterns and desk accessories visible.

The sequence office-maze is recorded during a walk
through various offices and hallways in the university build-
ing. The sequence running-easy is recorded in handheld
mode while running through the corridor of the office. In
the sequence running-hard, the camera is rapidly rotated
during running such that it faces the office wall for short
moments. This makes it hard to perform camera tracking.
However, the wall features research posters such that there
is still texture present for tracking.



TABLE II: Sequence Overview

Sequence Duration(s) MER(106 events/s)
mocap-1d-trans 36.6 14.8
mocap-3d-trans 33.2 24.9

mocap-6dof 19.5 27.15
mocap-desk 37.5 29.7

mocap-desk2 21.4 28.4
mocap-shake 26.3 26.55
mocap-shake2 26.7 22.3

office-maze 160 28
running-easy 73 27.25
running-hard 72 26.2

skate-easy 79 26.25
skate-hard 86 25.7
loop-floor0 284 29.55
loop-floor1 257 29.55
loop-floor2 240 28.3
loop-floor3 256 29.7
floor2-dark 152 17.45

slide 196 28
bike-easy 288 26.8
bike-hard 281 26.9
bike-dark 261 25.35

The sequence skate-easy traverses the same corridor as
running-easy and running-hard with a skateboard. In skate-
hard, the camera is rapidly rotated to face the wall for a few
seconds during the ride.

The sequence loop-floor0 to loop-floor3 are obtained by
walking through the university building on the respective
floor. These four datasets can be used to test loop closure
detection algorithms in the event stream, which is still an
immature research field. We additionally provide the se-
quence floor2-dark. This sequence shows the high dynamic
range advantage of the event camera over the visual camera.
We believe that with better event-based SLAM algorithms,
the path could be tracked accurately even in this low-light
condition, whereas state-of-the art visual SLAM systems fail,
see Table IV.

The sequence slide shows a path through the university
building while sliding from floor3 to floor0 in the middle
of the sequence. This sequence contains high dynamic range
and high speed motion.

The bike sequences are recorded with the helmet worn
on the head, whereas all other sequences are recorded in
handheld mode. bike-easy contains a biking sequence during
the day at medium speed. bike-hard traverses the same path
as bike-easy, additionally containing rapid rotations of the
sensor setup, suddenly facing sideways or down on the road.
bike-dark contains a slightly shorter path than the other bike
sequences, recorded at night in low-light conditions outside.

In Figure 1, 4 and 5 we show both visual frames and
events of a few selected sequences. The events are visualized
as accumulated frames with an accumulation time of 5
milliseconds. Positive events are visualized in blue, negative
events in black and white color is used to indicate no change.

(a) left visual frame (b) right visual frame

(c) left event frame (d) right event frame

Fig. 4: run-easy sequence at 25.1 seconds. The visual
frames contain significant motion blur on the poster and
oversaturation in the middle part of the image, whereas the
event frames can capture many details.

(a) left visual frame (b) right visual frame

(c) left event frame (d) right event frame

Fig. 5: slide sequence at 93.7 seconds. Due ot the auto-
exposure algorithm in the visual cameras, the exposure
adapts quickly and details in the bright background are
visible. However, a few frames earlier in this sequence, the
frames are similarly oversatured as in Figure 4.

IV. CALIBRATION

A. Intrinsic and Extrinsic Camera Calibration

The field of view among all cameras is only partially over-
lapping. Hence, to allow for extrinsic calibration between our
camera modalities we use a pattern of AprilTags [15]. This
pattern allows to perform robust data association between



Fig. 6: The April-grid pattern has been reconstructed based
on creating the time surface. Using time surfaces showed
slightly better AprilTag detection recall compared to accu-
mulated event frames.

recognized tags from different cameras. It is displayed by a
commodity computer screen, blinking at a fixed frequency.
We move the multi-camera setup around the screen to capture
the pattern from various poses.

The intrinsic and extrinsic parameters for both visual and
event cameras are determined in a joint optimization. To al-
low for accurate intrinsic parameter estimation, in particular
radial distortion of the lenses, we validate for each calibration
sequence that the detections of AprilTags are spread over the
full image dimension of each camera.

To enable detection of AprilTags in the event stream, we
transform the events into a frame-like structure. One popular
method is to accumulate events within a certain time interval
t ∈ [ttarget−∆t, ttarget+∆t] into frames. However, in order
to create sharper event frames at time ttarget, we use the
time surface representation instead. Inspired by [16], we use
time surfaces which take the latest as well as the next future
event at time ttarget into account. The time-surface Tttarget
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Fig. 7: Accelerometer log-log plot of Allan deviation over
integration time τ . We obtain the IMU noise values of
σw,acc = 0.0012 at τ = 1 and σb,acc = 2.2856 x 10−5 at
τ = 3.

is created as follow,

Tttarget [x, y] =
1

2
(e−α|tlast−ttarget| + e−α|tnext−ttarget|)

(2)
where tlast is the timestamp of the previous event at pixel
[x, y] before ttarget, tnext is the timestamp of next event at
pixel [x, y] after ttarget and α is the decay rate. Using a time
surface representation, we noticed a higher detection recall of
AprilTags and hence a slightly more robust calibration. To
perform this joint calibration, we modified the calibration
tools from Basalt [17]. A time surface created with the
described method can be seen in Figure 6. We provide
the calibration parameters as well as the raw calibration
sequences for each day of recording.

B. IMU intriniscs, IMU-Camera-extrinsics

Similar to the TUM-VI dataset [3], we assume that the
IMU measurements are subject to white noise with standard
deviation σw and an additive bias value. The bias value is
changing according to a random walk over time. The random
walk is modelled as integration of white noise with standard
deviation σb. To determine the parameter σw, a slope of − 1

2
is fitted to the range of 0.02 ≤ τ ≤ 1 in the log-log plot of
the Allan deviation. To determine the bias parameter σb, a
slope of 1

2 is fitted to the range 1000 ≤ τ ≤ 6000 seconds.
The values for σw and σb can then be taken as the y-value
of the fitted line at τ = 1 and τ = 3, respectively. This
procedure is visualized in Figure 7 and 8.

The extrinsic calibration between IMU and visual cameras
is obtained by using a static Aprilgrid pattern. Calibration
data is found in imu-calib. All six degrees of freedom are
excited during this calibration while the pattern is constantly
in the field of view of the visual cameras. The exposure time
is set to a low value of 3.2 milliseconds to minimize motion
blur but still allow detection of AprilTags. We leave the
extrinsic between the visual cameras fixed and only optimize
the transformation between IMU and visual camera frame.
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Fig. 9: Coordinate systems which we have used in this paper.
Solid lines are the relative poses found during calibration,
dashed lines are the relative poses measured in real-time.
Colors indicate the respective raw sensor clock before tem-
poral calibration.

C. Temporal Calibration

All sensors on the setup are synchronized in hardware.
An overview of the different sensor clocks can be seen
in Figure 9. We report all timestamps in the left event
camera’s clock (main clock). The synchronization between
left and right event camera is achieved through the available
synchronization connections of the Evaluation Kit.

The Genuino 101 triggers the visual cameras, measures
exposure start and stop timestamps and reads the IMU values.
As mentioned above, we define the timestamp of an image
as mid-exposure point. Hence, timestamps of the images
are well-aligned with IMU measurements in Genuino clock.
However, due to the IMU readout delay, there exits a constant
offset of 4.77 milliseconds. We determine this offset exactly
once during calibration and correct it in all recordings.

To transform IMU and image timestamps from Genuino
clock to main clock, we additionally measure exposure start
and stop timestamps via trigger signal in the left event
camera. Data association between triggers on the Genuino
and triggers on the event camera is achieved through a
distinctive startup sequence, which alternates extremely high
and low exposure times. We notice a linear relation between
Genuino and main clock, i.e. there exists a constant offset
b and a small constant clock drift m between both clocks.
Whereas the value of b is different for each sequence, the
value of m is usually around 2 milliseconds per minute
(Genuino clock runs faster than main clock). We obtain the
linear coefficients from a least-squares fit and correct for
them in each sequence, such that all sensor data is provided
in main clock.

Ground truth poses are recorded in MoCap clock. We
model a constant offset ∆tgt,m between MoCap clock and
main clock. Since all data is recorded on the same com-

Fig. 10: Alignment of angular velocities between gyroscope
measurements and Mocap estimations (using central differ-
ences of poses). The obtained time offset ∆tgt,m between
MoCap clock and IMU clock is provided for each sequence.

puter, a rough estimate of this offset is obtained from the
system’s recording time. A refinement of this estimate is
obtained by aligning angular velocities measured by the IMU
with estimated angular velocities which are obtained from
central differences between MoCap poses, as can be seen
in Figure 10. The offset ∆tgt,m which minimizes the sum
of all squared errors is estimated for each sequence. For
the trajectories where we exit and later re-enter the MoCap
room, we compute this offset once for the beginning and
once for the end of the sequence to account for clock drift.
The provided ground truth poses in the dataset have corrected
timestamps and are reported in the main clock. Additionally,
we provide the estimated offsets to facilitate custom time-
alignment approaches.

D. Biases and Event Statistics

Table III shows the biases of the event cameras, which are
the same in all sequences. The ratio of ON over OFF pixels
is approximately 0.7 in all sequences and for both cameras.

V. EVALUATION OF STEREO-VIO ALGORITHMS

To verify the data and calibration quality, we test all
sequences with state-of-the-art open-source visual-inertial
odometry systems. We provide evaluation for Basalt [17] and
VINS-Fusion [18, 19, 20]. The methods are used with default

TABLE III: Biases of Prophesee GEN4-CD sensor

bias name value
bias diff 69

bias diff off 52
bias diff on 112

bias fo n 23
bias hpf 48
bias pr 151

bias refr 45



TABLE IV: Absolute trajectory errors (ATE) [m]

Sequence Basalt VINS-Fusion length[m]
mocap-1d-trans 0.003 0.011 5.01
mocap-3d-trans 0.009 0.010 6.85

mocap-6dof 0.014 0.017 5.30
mocap-desk 0.016 0.058 9.44
mocap-desk2 0.011 0.013 5.34
mocap-shake x x 24.5

mocap-shake2 x x 26.2
office-maze 0.64 4.40 205

running-easy 1.34 0.78 113
running-hard 1.03 1.74 117

skate-easy 0.22 1.74 114
skate-hard 1.78 0.97 113
loop-floor0 0.58 3.43 358
loop-floor1 0.66 1.72 338
loop-floor2 0.48 2.04 282
loop-floor3 0.51 8.36 328
floor2-dark 4.54 4.54 254

slide 1.54 2.44 248
bike-easy 1.62 13.10 788
bike-hard 2.01 9.88 784
bike-dark 6.26 20.20 670

(a) floor 0 (b) mocap 6dof

(c) shake 2 (d) floor 2 night

(e) shake 1 (f) bike night

Fig. 11: Results of evaluated methods for 2 easy sequences
(a, b) and 4 challenging sequences (c, d, e, f) from our
dataset. The ground truth is shown in black for the segments
of the trajectory where it is available. The presented results
are obtained with default parameters. Noise parameters are
set to inflated values from the Allan plots in Figure 7 and 8
to account for unmodeled noise and vibrations.

parameters on full resolution images (1024 x 1024 pixels).
The results are summarised in Table IV and a visualization
for some sequences is showed in Figure 11. An x in Table
IV indicates an ATE larger than the sequence’s path length
or that the method fails. Basalt and VINS-Fusion perform
well for non-challenging sequences as expected.

However, our evaluation also shows that Basalt and VINS-
Fusion result in large drift for most of the challenging
sequences, e.g. with fast motion in running-easy, running-
hard, skate-hard, slide, and bike-hard or with low light,
e.g. in floor2-dark and bike-dark. This means that the
dataset is challenging enough for state-of-the-art visual-
inertial systems and can be used for further research in event-
based visual-inertial odometry algorithms.

VI. CONCLUSION

In this paper, we propose a novel dataset with a diverse
set of sequences, including small and large-scale scenes. We
specifically provide challenging sequences in low light and
high dynamic-range conditions as well as during fast motion.
Our dataset composes of a high-resolution event stream and
images captured by a wide field of view lens, as well as IMU
data and partial ground truth poses.

We evaluate our dataset with state-of-the-art visual-
camera-based stereo-VIO. The results show that there are
open challenges which need new algorithms and new sensors
to tackle them. Event-based odometry algorithms are still
immature compared to frame-based methods, which makes
it difficult to present an evaluation of event-based algorithms.
Hence, our dataset can be useful for further research in the
development of event-based visual-inertial odometry, as well
as 3D reconstruction and sensor fusion algorithms.

ACKNOWLEDGMENT
We thank everybody who contributed to the paper. In

particular, we want to thank Mathias Gehrig (University of
Zurich) for supporting us with the h5 file format. We also
thank Lukas Koestler (Technical University of Munich) for
helpful suggestions and proofreading the paper. Additionally,
we thank Yi Zhou (HKUST Robotics Institute) for his helpful
comments. This work was supported by the ERC Advanced
Grant SIMULACRON.

REFERENCES

[1] Guillermo Gallego, T. Delbrück, G. Orchard, C. Bar-
tolozzi, B. Taba, A. Censi, Stefan Leutenegger, A.
Davison, J. Conradt, Kostas Daniilidis, and D. Scara-
muzza. “Event-based Vision: A Survey”. In: IEEE
transactions on pattern analysis and machine intel-
ligence PP (2020).

[2] Tobi Delbruck, Yuhuang Hu, and Zhe He. V2E: From
video frames to realistic DVS event camera streams.
2020. arXiv: 2006.07722.

[3] D. Schubert, T. Goll, N. Demmel, V. Usenko, J.
Stueckler, and D. Cremers. “The TUM VI Benchmark
for Evaluating Visual-Inertial Odometry”. In: Interna-
tional Conference on Intelligent Robots and Systems
(IROS). Oct. 2018.

https://arxiv.org/abs/2006.07722


[4] D. Weikersdorfer, D. B. Adrian, D. Cremers, and
J. Conradt. “Event-based 3D SLAM with a depth-
augmented dynamic vision sensor”. In: 2014 IEEE
International Conference on Robotics and Automation
(ICRA). 2014, pp. 359–364.

[5] Francisco Barranco, Cornelia Fermuller, Yiannis Aloi-
monos, and Tobi Delbruck. “A Dataset for Visual Nav-
igation with Neuromorphic Methods”. In: Frontiers in
Neuroscience 10 (2016), p. 49.

[6] Elias Mueggler, Henri Rebecq, Guillermo Gallego,
Tobi Delbruck, and Davide Scaramuzza. “The Event-
Camera Dataset and Simulator: Event-based Data for
Pose Estimation, Visual Odometry, and SLAM”. In:
International Journal of Robotics Research, Vol. 36,
Issue 2, (Feb. 2017), pp. 142–149.

[7] Binas Binas, Neil J., Liu D., S.-C., and T. Delbruck.
“DDD17 End-To-End DAVIS Driving Dataset”. In:
ICML17 Workshop on Machine Learning for Au-
tonomous Vehicles. 2017.

[8] Y. Hu, J. Binas, D. Neil, S.-C. Liu, and T. Delbruck.
“DDD20 End-to-End Event Camera Driving Dataset:
Fusing Frames and Events with Deep Learning for
Improved Steering Prediction”. In: Special session
Beyond Traditional Sensing for Intelligent Transporta-
tion (23rd IEEE International Conference on Intelli-
gent Transportation Systems). Sept. 2020.

[9] E. Perot, P. de Tournemire, D. Nitti, J. Masci, and
A. Sironi. “Learning to Detect Objects with a 1
Megapixel Event Camera”. In: Advances in Neural
Information Processing Systems 33 (NeurIPS). 2020.

[10] Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq,
Matthias Faessler, and Davide Scaramuzza. “Are We
Ready for Autonomous Drone Racing? The UZH-FPV
Drone Racing Dataset”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). 2019.

[11] A Lee, Cho J., Yoon Y., S. Shin, and A Y. Kim.
“ViViD: Vision for Visibility Dataset”. In: IEEE Int.
Conf. Robotics and Automation (ICRA) Workshop:

Dataset Generation and Benchmarking of SLAM Al-
gorithms for Robotics and VR/AR. 2019.

[12] Alex Zihao Zhu, Dinesh Thakur, Tolga Özaslan, Bernd
Pfrommer, Vijay Kumar, and Kostas Daniilidis. “The
Multi Vehicle Stereo Event Camera Dataset: An Event
Camera Dataset for 3D Perception”. In: IEEE Robotics
and Automation Letters 3 (2018).

[13] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and
Davide Scaramuzza. “DSEC: A Stereo Event Camera
Dataset for Driving Scenarios”. In: IEEE Robotics and
Automation Letters (2021).

[14] J. Engel, V. Koltun, and D. Cremers. “Direct Sparse
Odometry”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (Mar. 2018).

[15] E. Olson. “Apriltag: A robust and flexible visual fidu-
cial system,” in: 2011 IEEE International Conference
on Robotics and Automation. 2011.

[16] Yi Zhou, Guillermo Gallego, and Shaojie Shen. Event-
based Stereo Visual Odometry. 2021. arXiv: 2007.
15548 [cs.CV].

[17] V. Usenko, N. Demmel, D. Schubert, J. Stueckler,
and D. Cremers. “Visual-Inertial Mapping with Non-
Linear Factor Recovery”. In: IEEE Robotics and Au-
tomation Letters (RA-L) Int. Conference on Intelligent
Robotics and Automation (ICRA) 5.2 (2020), pp. 422–
429.

[18] Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-
Mono: A Robust and Versatile Monocular Visual-
Inertial State Estimator”. In: IEEE Transactions on
Robotics 34.4 (2018), pp. 1004–1020.

[19] Tong Qin, Jie Pan, Shaozu Cao, and Shaojie Shen.
A General Optimization-based Framework for Local
Odometry Estimation with Multiple Sensors. 2019.
eprint: arXiv:1901.03638.

[20] Tong Qin, Shaozu Cao, Jie Pan, and Shaojie Shen.
A General Optimization-based Framework for Global
Pose Estimation with Multiple Sensors. 2019. eprint:
arXiv:1901.03642.

https://arxiv.org/abs/2007.15548
https://arxiv.org/abs/2007.15548
arXiv:1901.03638
arXiv:1901.03642

	I INTRODUCTION
	II Related Work
	III Dataset
	III-A Sensor Setup
	III-B Sequence Description

	IV Calibration
	IV-A Intrinsic and Extrinsic Camera Calibration
	IV-B IMU intriniscs, IMU-Camera-extrinsics
	IV-C Temporal Calibration
	IV-D Biases and Event Statistics

	V Evaluation of stereo-VIO Algorithms
	VI Conclusion

