Recovering Real-world Reflectance Properties and Shading from HDR Imagery

¹ Reality Labs Research (Meta)

² Technical University of Munich

Agenda

- 1. Introduction
- 2. Background Rendering Equation
- 3. Approach
 - a. Microfacet BRDF Model
 - b. Lit Diffuse HDR Texture
 - c. Shading and Albedo Reconstruction
 - d. Specular Appearance Estimation

4. Experiments

- a. Albedo and Shading Validation
- b. Specular Appearance Validation
- c. Relighting
- 5. Conclusion

Introduction

- Given an HDR video capture, its poses and a 3D reconstruction of the scene:
 - Use HDR textures to estimate albedo and shading *per surface element*
 - Calculate ideal target frames (TF) for each object in the scene given an object segmentation
 - Use each objects TF to estimate it's non-diffuse material

- Enables faithful reconstructions
- Plausible scene relighting
- Visually accurate rendering of virtual objects

Camera Capture

Proposed

Background - Rendering equation

Rendering Equation [Kajiya 1986]

$$I(p) = L_{\mathrm{o}}(x,\omega_o) = \int_{\mathcal{H}^2} f_{\mathrm{r}}(x,\omega,\omega_o) L(x,\omega) raket{\omega,n} \mathrm{d}\omega$$

I(p): image I a pixel $p \in \mathbb{R}^2$

 $L_o(x,\omega_o)$: Observed radiance L_o at $x\in\mathbb{R}^3$ in viewing direction $\,\omega_\mathrm{o}\,\in\mathcal{H}^2$ \mathcal{H}^2 : Upper hemisphere

 $f_{\rm r}$: Bidirectional Reflectance Distribution Function (BRDF)

L: Incoming radiance at $x\in \mathbb{R}^3$ from direction $\ \omega\in \mathcal{H}^2$

 $\langle \omega,n
angle$: Dot-product between incident direction $oldsymbol{\omega}$ and surface normal $oldsymbol{n}$

Approach - BRDF

We use a dichromatic BRDF [Shafer 1985], i.e.

 $f_r(x,\omega,\omega_o)=f_{
m d}(x)+f_{
m nd}(x,\omega,\omega_o)$.

 $f_{\mathrm{d}}(x)$: Albedo ho(x) at surface point $x \in \mathbb{R}^3$: $f_{\mathrm{d}}(x;
ho) =
ho(x)$

 $f_{nd}(x, \omega, \omega_o)$: Non-diffuse microfacet BRDF [Torrance and Sparrow 1967] with parameters roughness φ and specular ψ , $f_{nd}(x, \omega, \omega_o; \varphi, \psi)$:

 $egin{aligned} f_{
m nd}(arphi,\psi) &= G(arphi)D(arphi)F(\psi) \ G(arphi) &= G_1(\langle n,\omega
angle\,,arphi)G_1(\langle n,\omega_{
m o}
angle\,,arphi); \quad G_1(x,y) &= rac{1}{x+\sqrt{x^2+y^2-x^2y^2}} \ D(arphi) &= rac{arphi^2}{\pi(1+(arphi^2-1)\langle n,h
angle^2)^2}; \quad h = rac{\omega+\omega_{
m o}}{\|\omega+\omega_{
m o}\|} \ F(\psi) &= \psi + (1-\psi)(1-\langle\omega,h
angle)^5 \end{aligned}$

Approach - Reformulation Rendering Equation

Plugging the BRDF model into the rendering equation gives:

$$egin{aligned} &L_{ ext{o}}(x,\omega_{o})=L_{ ext{d}}(x)+L_{ ext{nd}}(x,\omega_{o})\ &L_{ ext{d}}(x)=
ho(x)\int_{\mathcal{H}^{2}}L(x,\omega)ig\langle\omega,n
angle\,\mathrm{d}\omega\ &L_{ ext{nd}}(x,\omega_{o})=\int_{\mathcal{H}^{2}}f_{ ext{nd}}(x,\omega,\omega_{o};arphi,\psi)L(x,\omega)ig\langle\omega,n
angle\,\mathrm{d}\omega\end{aligned}$$

We solve for $L_{
m d},
ho, arphi$, and ψ for each surface element of a complete indoor scan

Approach - Proposed Overall Algorithm

Approach - Lit Diffuse HDR Texture $L_{ m d}$

Approach - Lit Diffuse HDR Texture $L_{ m d}$

Running mean on HDR 16-bit data results in artifacts

Use median instead of mean [Riviere et al. 2016]

- All values have to be stored for median calculation
- => Very expensive, memory demanding, time consuming

=> Estimate an approximation of the median using the P-Square algorithm [Jain and Chlamtac 1985]

Mean with artifacts

Approach - Running Average on HDR data

Approach - Lit Diffuse HDR Texture $L_{\rm d}$

=> Assume median texture equals diffuse radiance $L_{\rm d}$, and we call it *Lit diffuse* HDR texture

Median texture = L_{d} = Lit diffuse HDR texture

Approach - Shading and Albedo Reconstruction

Approach - Shading and Albedo Reconstruction

$$egin{aligned} &L_{ ext{o}}(x,\omega_{o})=L_{ ext{d}}(x)+L_{ ext{nd}}(x,\omega_{o})\ &L_{ ext{d}}(x)=f_{ ext{d}}(x;
ho)\int_{\mathcal{H}^{2}}L(x,\omega)ig\langle\omega,n
angle\, ext{d}\omega\ &L_{ ext{nd}}(x,\omega_{o})=\int_{\mathcal{H}^{2}}f_{ ext{nd}}(x,\omega,\omega_{o};arphi,\psi)L(x,\omega)ig\langle\omega,n
angle\, ext{d}\omega\end{aligned}$$

Approach - Shading and Albedo Reconstruction

Solve for albedo with

$$ho(x)=rac{L_{
m d}(x)}{S(x)}$$

Approach - Estimate Shading

$$S(x) = \int_{\mathcal{H}^2} L(x,\omega) ig\langle \omega,n
angle \, \mathrm{d} \omega pprox \sum_{i=1}^N L(x,\omega_i) ig\langle \omega_i,n
angle \, \mathrm{d} \omega$$

• Cast N rays $(x,\omega_i), i=1,\ldots,N$, at each surface point $x\in\mathbb{R}^3$ in direction $\omega_i\in\mathcal{H}^2$

• At each rays hitpoint $ilde{x}_i \in \mathbb{R}^3$: $L(x,\omega_i) = L_{\mathrm{d}}(ilde{x}_i)$

 L_{d}

N = 100 samples

 $N=10000\,\mathrm{samples}$

Approach - Target Frame Calculation

Approach - Target Frame Calculation

Use only one target frame for each object

- Less computational complexity
- Fast

Target frame should fulfill:

- A_1 : High chance of specular highlight caused by direct illumination
- A_2 : HDR capture consists of valid pixels, i.e. not over-/under-saturated

Approach - Target Frame Calculation

Approach - Roughness and Specular Estimation

Approach - Roughness and Specular Estimation

Goal: Estimate i-th object non-diffuse material parameters φ^i, ψ^i

$$I^i(p) = I^i_{
m d}(p) + I^i_{
m nd}(p;arphi^i,\psi^i)$$
 ,

$$\min_{arphi^i,\psi^i\in[0,1]}\sum_{p\in\Omega^i}\|I^i(p)-(I^i_{
m d}(p)+I^i_{
m nd}(p;arphi^i,\psi^i))\|^2,\quadorall i$$

=> Grid search in φ^i , with nested least squares optimization in ψ^i

Experiments

Real-world data set "Replica" [Straub et al. 2019] used for quantitative and qualitative evaluation

Provides:

- Geometry of complete 3D scenes
- HDR video
- Per frame camera poses
- Object instance segmentation

Experiments - Shading and Albedo Validation

Office 3

Room 2

Input

Albedo

Shading

Experiments - Specular Appearance Validation

Lit Diffuse HDR Texture

Proposed

Ground Truth Video Capture

Experiments - Relighting

Conclusion

- Calculate lit diffuse HDR texture
- Calculate albedo and shading per surface element
- Automatically calculate target frame for every object
- Calculate specular appearance parameters for every object