

Bjoern Haefner<sup>1,2</sup>

### Meta

## Introduction

- Estimate material parameters for each object in large scale sc
- Enables faithful reconstructions
- $\succ$  Plausible scene relighting
- Visually accurate rendering of virtual objects



Camera Capture

# Rendering Equation and BRDF

Rendering equation:

$$I(p) = L_{\mathrm{o}}(x,\omega_o) = \int_{\mathcal{H}^2} f_{\mathrm{r}}(x,\omega,\omega_o) L(x,\omega)$$

Split BRDF into diffuse (albedo) and non-diffuse (specular appear

$$f_r(x,\omega,\omega_o) = f_{
m d}(x) + f_{
m nd}(x,\omega,\omega_o) 
onumber \ f_{
m d}(x;
ho) = 
ho(x) \ ext{(Diffuse/Albedo)}$$

$$f_{
m nd}(x,\omega,\omega_o;arphi,\psi)=G(arphi)D(arphi)F(\psi) \quad ({
m Non-Diffustory})$$

Plug into rendering equation:

$$egin{aligned} &L_{ ext{o}}(x,\omega_{o})=L_{ ext{d}}(x)+L_{ ext{nd}}(x,\omega_{o})\ &L_{ ext{d}}(x):=
ho(x)\int_{\mathcal{H}^{2}}L(x,\omega)ig\langle\omega,n
angle\,\mathrm{d}\omega\ &L_{ ext{nd}}(x,\omega_{o}):=\int_{\mathcal{H}^{2}}f_{ ext{nd}}(x,\omega,\omega_{o};arphi,\psi)L(x,\omega) \end{aligned}$$

## Lit Diffuse HDR Texture

- Running mean on HDR 16-bit data has artifacts
- Use running median instead of mean
- Assume median texture equals diffuse radiance  $L_{
  m d}$ 
  - $\implies$  Median texture =  $L_{
    m d}$  = Lit diffuse HDR texture





| orld R                                        | eflectance Prop                                                                                                                                                                                                                       | <b>)er</b>                    |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Simon<br>Green <sup>1</sup>                   | Alan Daniel<br>Oursland <sup>1</sup> Andersen <sup>1</sup>                                                                                                                                                                            | Mie<br>Goe                    |
| 1                                             | Reality Labs Research (Meta)                                                                                                                                                                                                          | <sup>2</sup> Tecł             |
|                                               | Algori                                                                                                                                                                                                                                | thm                           |
| enes                                          | Given Input<br>Estimated Output<br>Algorithm                                                                                                                                                                                          | ometry<br>R video ca<br>poses |
| Model                                         | Albedo and Shad                                                                                                                                                                                                                       | ding                          |
| $\langle \omega, n  angle  \mathrm{d} \omega$ | • First estimate shading, then solve for a Median Texture Shading Albed                                                                                                                                                               | albedo<br>.o                  |
| rance) part:                                  | $L_{ m d}(x) = S(x) \cdot  ho(x)$                                                                                                                                                                                                     | $) \Longrightarrow$           |
| se)                                           | $egin{aligned} & \int & \int & J_{\mathcal{H}^2} L(x,\omega) ig \langle \omega,n  angle  du \ u \ u \ u \ u \ u \ u \ u \ u \ u $                                                                                                     | $d\omegapprox$                |
| $\left< \omega, n \right> \mathrm{d} \omega$  | <image/> <image/> <image/> <image/> <image/> <image/>                                                                                                                                                                                 | = 100                         |
|                                               | Target Frame                                                                                                                                                                                                                          | Ca                            |
|                                               | <ul> <li>Use only 1 target frame for each object:</li> <li>Less computational complexity</li> <li>Fast</li> </ul>                                                                                                                     | Rendered<br>Specularity       |
|                                               | <ul> <li>Target frame should fulfill:</li> <li>A<sub>1</sub>: High chance of specular highlight caused by direct illumination</li> <li>A<sub>2</sub>: HDR capture consists of valid pixels, i.e. not over-/under-saturated</li> </ul> | $\mathcal{A}_1$               |

 $\mathcal{A}_2$ 

