Recovering Real-world Reflectance Properties and Shading from HDR Imagery

Rendering Equation and BRDF Model

Rendering equation:
$I(p)=L_{o}\left(x, \omega_{o}\right)=\int_{\mathcal{H}^{2}} f_{\mathrm{r}}\left(x, \omega, \omega_{o}\right) L(x, \omega)\langle\omega, n\rangle \mathrm{d} \omega$
Split BRDF into diffuse (albedo) and non-diffuse (specular appearance) part:

$$
\begin{aligned}
f_{r}\left(x, \omega, \omega_{o}\right)=f_{\mathrm{d}}(x)+f_{\text {nd }}\left(x, \omega, \omega_{o}\right) \\
\left.f_{\mathrm{d}}(x ; \rho)=\rho(x) \quad \text { (Diffuse } / \text { Albedo }\right)
\end{aligned}
$$

$f_{\text {nd }}\left(x, \omega, \omega_{o} ; \varphi, \psi\right)=G(\varphi) D(\varphi) F(\psi) \quad$ (Non-Diffuse)
Plug into rendering equation:

$$
\begin{aligned}
& L_{0}\left(x, \omega_{o}\right)=L_{\mathrm{d}}(x)+L_{\mathrm{nd}}\left(x, \omega_{o}\right) \\
& L_{\mathrm{d}}(x):=\rho(x) \int_{\mathcal{H}^{2}} L(x, \omega)\langle\omega, n\rangle \mathrm{d} \omega \\
& L_{\mathrm{nd}}\left(x, \omega_{o}\right):=\int_{\mathcal{H}^{2}} f_{\mathrm{nd}}\left(x, \omega, \omega_{o} ; \varphi, \psi\right) L(x, \omega)\langle\omega, n\rangle \mathrm{d} \omega
\end{aligned}
$$

Lit Diffuse HDR Texture

- Running mean on HDR 16 -bit data has artifacts
- Use running median instead of mean
- Assume median texture equals diffuse radiance L_{d}

$$
\Longrightarrow \text { Median texture }=L_{\mathrm{d}}=\text { Lit diffuse HDR texture }
$$

Running Mean

Running Median

Specular Appearance Estimation

$I^{i}(p)=I_{\mathrm{d}}^{i}(p)+I_{\mathrm{nd}}^{i}\left(p ; \varphi^{i}, \psi^{i}\right)$

- $I^{i}(p)$: i-th objects target frame
- $I_{\mathrm{d}}^{i}(p)$: Diffuse part (rendered using L_{d})
- $I_{\mathrm{nd}}^{i}\left(p ; \varphi^{i}, \psi^{i}\right)$: Non-diffuse part

$$
\min _{\varphi^{i}, \psi^{i} \in[0,1]} \sum_{p \in \Omega^{i}}\left\|I^{i}(p)-\left(I_{\mathrm{d}}^{i}(p)+I_{\mathrm{nd}}^{i}\left(p ; \varphi^{i}, \psi^{i}\right)\right)\right\|^{2}, \quad \forall i
$$

\Longrightarrow Grid search in φ^{i}, with nested least squares optimization in ψ^{i}

Albedo and Shading Estimation

- First estimate shading, then solve for albedo in closed form:

$$
\overbrace{L_{\mathrm{d}}(x)}^{\text {Median Texture }}=\overbrace{S(x)}^{\text {Shading }} \cdot \overbrace{\rho(x)}^{\text {Albedo }} \Longrightarrow \rho(x)=\frac{L_{\mathrm{d}}(x)}{S(x)}
$$

$$
S(x)=\int_{\mathcal{H}^{2}} L(x, \omega)\langle\omega, n\rangle \mathrm{d} \omega \approx \sum_{i=1}^{N} L\left(x, \omega_{i}\right)\left\langle\omega_{i}, n\right\rangle
$$

- Cast N rays $\left(x, \omega_{i}\right), i=1, \ldots, N$, at each point $x \in \mathbb{R}^{3}$ in direction $\omega_{i} \in \mathcal{H}^{2}$
- At each rays hitpoint $\tilde{x}_{i} \in \mathbb{R}^{3}: L\left(x, \omega_{i}\right)=L_{\mathrm{d}}\left(\tilde{x}_{i}\right)$

Target Frame Calculation

Use only 1 target frame for each object:

- Less computational complexity
- Fast

Target frame should fulfill:

- \mathcal{A}_{1} : High chance of specular highlight caused by direct illumination
- \mathcal{A}_{2} : HDR capture consists of valid
pixels, i.e. not over-/under-saturated

