



# Fight III-Posedness With III-Posedness

Single-Shot Variational Depth Super-Resolution From Shading

Bjoern Haefner, Yvain Quéau, Thomas Möllenhoff, Daniel Cremers

**Technical University of Munich** 

CVPR 2018 Salt Lake City

19. June 2018



# Problem of Depth Super-Resolution







Input RGB image

Depth image

3D shape

Depth misses fine geometric details due to

- noise and quantization effects
- coarse resolution of the depth
- ⇒ Perform super-resolution of depth (ill-posed problem!)



# Shape-from-shading

Shape-from-Shading (SfS) tries to solve

$$I = \mathcal{R}(\mathbf{z}|\ell, \rho),$$

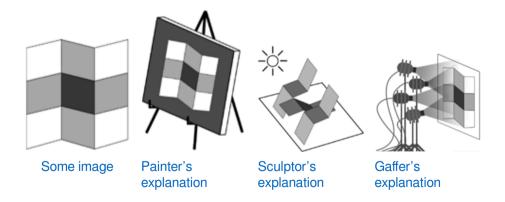
- **RGB** image  $I: \Omega \to \mathbb{R}^3$
- $\blacksquare$  image formation model  $\mathcal{R}$
- depth map  $z: \Omega \to \mathbb{R}$
- lighting ℓ
- surface reflectance  $\rho:\Omega\to\mathbb{R}^3$

⇒ Shape-from-shading is an ill-posed problem!





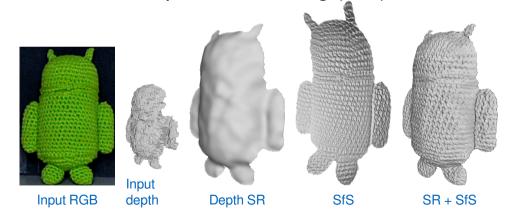
# Shape-from-shading



[Adelson & Pentland; PBI 1996]



Motivation Fight ill-posedness with ill-posedness to jointly solve depth super-resolution (SR) and shape-from-shading (SfS)





#### Parametrize R

Using spherical harmonics for the image formation model  $\mathcal{R}$  (e.g. [Basri & Jacobs; PAMI 2003]),

$$I = \mathcal{R}(\mathbf{z}|\ell, \rho) = \rho \left\langle \ell, \begin{bmatrix} \mathbf{n}(\mathbf{z}) \\ 1 \end{bmatrix} \right\rangle.$$

With a pinhole camera model n can be written wrt. to z.

$$\mathbf{n}(\mathbf{z}) = \frac{1}{\sqrt{\left| f \nabla \mathbf{z} \right|^2 + \left( -\mathbf{z} - \langle \mathbf{p}, \nabla \mathbf{z} \rangle \right)^2}} \begin{bmatrix} f \nabla \mathbf{z} \\ -\mathbf{z} - \langle \mathbf{p}, \nabla \mathbf{z} \rangle \end{bmatrix},$$

- $\blacksquare$  focal length f,
- $lue{}$  pixel coordinates  $\mathbf{p}:\Omega\to\mathbb{R}^2$  wrt. to the principal point.



#### Variational formulation

$$\min_{\substack{\rho:\,\Omega_{HR}\to\mathbb{R}^3\\\ell\in\mathbb{R}^4\\z:\,\Omega_{HR}\to\mathbb{R}}} \|\overbrace{\rho\,\langle\ell,\mathbf{m}_{\mathbf{Z},\nabla\mathbf{Z}}\rangle-I}\|_{\ell^2(\Omega_{HR})}^2 + \mu\|\overbrace{\mathit{Kz}-z_0}\|_{\ell^2(\Omega_{LR})}^2$$

 $\mathcal{P}_1(z)$  being a minimal surface prior [Graber et al.; CVPR 2015],

$$\mathcal{P}_1(\mathbf{z}) = \|\mathrm{d}\mathcal{A}(\mathbf{z}, 
abla \mathbf{z})\|_{\ell^1(\Omega_{H\!R})} = \left\|rac{\mathbf{z}}{\mathbf{f}^2}\sqrt{|\mathbf{f}
abla \mathbf{z}|^2 + (-\mathbf{z} - \langle\mathbf{p}, 
abla \mathbf{z}
angle)^2}
ight\|_{\ell^1(\Omega_{H\!R})}$$

and  $\mathcal{P}_2(\rho)$  being a piecewise constant albedo prior,

$$\mathcal{P}_2(\rho) = \left\|\nabla\rho\right\|_{\ell^0(\Omega_{\mathit{HR}})} = \sum_{\mathbf{p}\in\Omega_{\mathit{HR}}} \begin{cases} 0, & \text{if } \left|\nabla\rho(\mathbf{p})\right|_2 = 0, \\ 1, & \text{otherwise}. \end{cases}$$



#### Numerical solution

$$\min_{\substack{\rho: \Omega_{HR} \to \mathbb{R}^3 \\ \ell \in \mathbb{R}^4 \\ \varrho: \Omega_{HR} \to \mathbb{R}^3 \\ \theta: \Omega_{HR} \to \mathbb{R}^3}} E(\rho, \ell, \theta, z) := \|\rho \langle \ell, \mathbf{m}_{\theta} \rangle - I\|_{\ell^2(\Omega_{HR})}^2 + \mu \|Kz - z_0\|_{\ell^2(\Omega_{LR})}^2 \\
+ \nu \|d\mathcal{A}_{\theta}\|_{\ell^1(\Omega_{HR})} + \lambda \|\nabla \rho\|_{\ell^0(\Omega_{HR})}$$

s.t. 
$$\theta = (z, \nabla z)$$
.

Can be solved using a multi-block variant of ADMM.

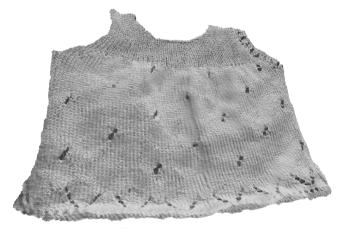




Input depth



Input RGB



Estimated depth

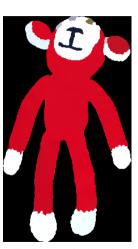




Input RGB



Estimated depth



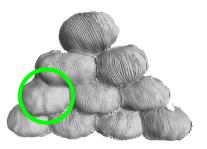
Estimated albedo



Input depth



Input RGB



Estimated depth



**Estimated Albedo** 





Input depth



Input RGB



Estimated depth



Estimated Albedo





## Comparison with multi-view approaches



Input depth



Input RGB



[Zollhöfer et al.; ToG 2015]



Ours





## Comparison with multi-view approaches







See you at our poster C19 on Tuesday 10:10a.m.-12:30p.m.



Code will be available online