# Multiframe Scene Flow with Piecewise Rigid Motion 

Vladislav Golyanik, Kihwan Kim, Robert Maier, Matthias Nießner, Didier Stricker and Jan Kautz

חVIDIA.

augmented
$\therefore \mathrm{VISION}$

## Scene Flow



## Scene Flow



## Scene Flow



Scene Flow Estimation:

- input: image sequence (RGB or RGB-D)
- output: 3D displacement field between underlying 3D scene states


## Scene Flow



Scene Flow Estimation:

- input: image sequence (RGB or RGB-D)
- output: 3D displacement field between underlying 3D scene states


## Overview

input RGB-D frames (overlayed)
ground truth optical flow

our MSF result (projected)

## Overview



Vogel et al. ICCV, 2013.


Jaimez et al. ICRA, 2015.


Quiroga et al. ECCV, 2014.


Jaimez et al. 3DV, 2015.
C. Vogel et al. Piecewise rigid scene flow. In ICCV, 2013.
J. Quiroga et al. Dense semi-rigid scene flow estimation from RGBD images. In ECCV, 2014.
M. Jaimez et al. A primal-dual framework for real-time dense rgb-d scene flow. In ICRA, 2015.
M. Jaimez et al. Motion cooperation: Smooth piece-wise rigid scene flow from rgb-d images. In 3DV, 2015.

## Proposed Approach



## Proposed Approach



- depth channel is used to obtain oversegmentation of the scene
- segmentation of a scene is kept fixed
- a global scene-flow formulation over multiple frames


## Proposed Approach



- take advantage of point set registration (projective point-to-plane ICP term)
- lifting function for coherent segment transformations


## Proposed Approach

$$
\begin{aligned}
& \mathfrak{E}\left(\mathbf{T}^{1}, \mathbf{T}^{2}, \ldots, \mathbf{T}^{|\mathrm{Z}|}, \mathbf{w}\right)=\sum_{\zeta \in \mathrm{Z}} \alpha_{\zeta} \mathfrak{E}_{\mathrm{data}}\left(\mathbf{T}^{\zeta}\right)+ \\
& +\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathbf{T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{1 . \mathrm{reg} .}\left(\mathbf{T}^{\zeta}, \mathbf{w}\right)+ \\
& +\eta \mathfrak{E}_{\mathrm{r} . \mathrm{opt} .}(\mathbf{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathbf{T}^{\zeta}\right)
\end{aligned}
$$

## Proposed Approach

$$
\begin{aligned}
& \mathfrak{E}\left(\mathbb{T}^{1}, \mathbb{T}^{2}, \ldots, \mathbb{T}^{|Z|}, \mathbf{w}\right)=\sum_{\zeta \in \mathrm{Z}} \alpha_{\zeta} \mathfrak{E}_{\text {data }}\left(\mathbb{T}^{\zeta}\right)+ \\
& +\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathbb{T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{\mathrm{l.reg} .}\left(\mathbb{T}^{\zeta}, \mathbf{w}\right)+ \\
& +\eta \mathfrak{E}_{\mathrm{r} . \mathrm{opt} .}(\mathbf{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathbb{T}^{\zeta}\right)
\end{aligned}
$$

## Proposed Approach

vector of frame-to-frame segment transformations

$$
\begin{aligned}
& \mathfrak{E}\left(\mathbb{T}^{1}, \mathbf{T}^{2}, \ldots, \mathbb{T}^{|Z|}, \mathbf{w}\right)=\sum_{\zeta \in Z} \alpha_{\zeta} \mathfrak{E}_{\mathrm{data}}\left(\mathbb{T}^{\zeta}\right)+ \\
& +\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathbb{T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{1 . \mathrm{reg} .}\left(\mathbb{T}^{\zeta}, \mathbf{w}\right)+ \\
& +\eta \mathfrak{E}_{\text {r.opt. }}(\mathbf{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathbf{T}^{\zeta}\right)
\end{aligned}
$$

## Proposed Approach

vector of frame-to-frame segment transformations

$$
\begin{aligned}
& \mathfrak{E}\left(\mathbb{T}^{1}, \mathbb{T}^{2}, \ldots, T^{|Z|}, w\right)=\sum_{\zeta \in Z} \alpha_{\zeta} \mathfrak{E}_{\text {data }}\left(\mathbb{T}^{\zeta}\right)+ \\
& +\sum_{\zeta \in Z} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathbb{T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{\text {l.reg. }}\left(\mathrm{T}^{\zeta}, \mathbf{w}\right)+ \\
& +\eta \mathfrak{E}_{\text {r.opt. }}(\mathbf{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathbf{T}^{\zeta}\right)
\end{aligned}
$$

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights

$$
\begin{aligned}
& \mathfrak{E}\left(\mathbb{T}^{1}, \mathbf{T}^{2}, \ldots, \mathbb{T}^{|\mathrm{Z}|}, \mathbf{w}\right)=\sum_{\zeta \in \mathrm{Z}} \alpha_{\zeta} \mathfrak{E}_{\mathrm{data}}\left(\mathbb{T}^{\zeta}\right)+ \\
& +\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathbf{T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{\text {l.reg. }}\left(\mathrm{T}^{\zeta}, \mathbf{w}\right)+ \\
& +\eta \mathfrak{E}_{\text {r.opt. }}(\mathbf{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathbf{T}^{\zeta}\right)
\end{aligned}
$$

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights

$$
\begin{aligned}
& \mathfrak{E}\left(\mathbb{T}^{1}, \mathbb{T}^{2}, \ldots, \mathbb{T}^{|Z|}, \mathbf{w}\right)=\sum_{\zeta \in Z} \alpha_{\zeta} \mathfrak{E}_{\text {data }}\left(\mathbb{T}^{\zeta}\right)+ \\
& +\sum_{\zeta \in Z} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathbb{T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{\text {l.reg. }}\left(\mathrm{T}^{\zeta}, \mathbf{w}\right)+ \\
& +\eta \mathfrak{E}_{\text {r.opt. }}(\mathbf{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathbf{T}^{\zeta}\right)
\end{aligned}
$$



## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights


## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights


input frames

a pyramid with visualized normals
result of pICP

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights

$$
\begin{gathered}
\mathfrak{E}\left(T^{1}, T^{2}, \ldots, T^{|Z|}, \mathbf{w}\right)=\sum_{\zeta \in \mathrm{Z}} \alpha_{\zeta} \mathfrak{E}_{\mathrm{data}}\left(\mathrm{~T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathrm{~T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{\text {l.reg. }}\left(\mathbb{T}^{\zeta}, \mathbf{w}\right)+\underset{\text { brightness }}{\text { constancy }}
\end{gathered}
$$

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights


## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights

$$
\begin{aligned}
& \mathfrak{E}\left(\mathbb{T}^{1}, \mathbf{T}^{2}, \ldots, \mathbf{T}^{|Z|}, \mathbf{w}\right)=\sum_{\zeta \in Z} \alpha_{\zeta} \mathfrak{E}_{\text {data }}^{4}\left(\mathbf{T}^{\zeta}\right)+ \\
& \text { brightness } \\
& \text { constancy } \\
& \text { projective ICP } \longrightarrow+\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathrm{~T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{1 . \text { reg. }}\left(\mathbb{T}^{\zeta}, \mathrm{w}\right)+\longleftarrow \quad \begin{array}{l}
\text { lifted segment } \\
\text { pose regularizer }
\end{array} \\
& +\eta \mathfrak{E}_{\text {r.opt. }}(\mathrm{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathbb{T}^{\zeta}\right) . \\
& \text { optimizer }
\end{aligned}
$$



## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights

$$
\begin{aligned}
& \text { brightness } \\
& \text { constancy } \\
& \text { projective ICP } \longrightarrow+\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathrm{~T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{1 . \text { reg. }}\left(\mathbb{T}^{\zeta}, \mathrm{w}\right)+\longleftarrow \quad \begin{array}{l}
\text { lifted segment } \\
\text { pose regularizer }
\end{array} \\
& +\eta \mathfrak{E}_{\mathrm{r} . \mathrm{opt} .}(\mathbf{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathrm{T}^{\zeta}\right) . \\
& \text { optimizer }
\end{aligned}
$$



oversegmentation

segment connectivity

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights

$$
\begin{aligned}
& \text { brightness } \\
& \text { constancy } \\
& \text { projective ICP } \longrightarrow+\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathrm{~T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{1 . \text { reg. }}\left(\mathbb{T}^{\zeta}, \mathrm{w}\right)+\longleftarrow \quad \begin{array}{l}
\text { lifted segment } \\
\text { pose regularizer }
\end{array} \\
& +\eta \mathfrak{E}_{\mathrm{r} . \mathrm{opt} .}(\mathbf{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathrm{T}^{\zeta}\right) . \\
& \text { optimizer }
\end{aligned}
$$



oversegmentation

segment connectivity

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights

$$
\begin{aligned}
& \text { brightness } \\
& \text { constancy } \\
& \text { projective ICP } \longrightarrow+\sum_{\zeta \in \mathrm{Z}} \beta_{\zeta} \mathfrak{E}_{\mathrm{pICP}}\left(\mathrm{~T}^{\zeta}\right)+\sum_{\zeta \in \mathrm{Z}} \gamma_{\zeta} \mathfrak{E}_{1 . \text { reg. }}\left(\mathbb{T}^{\zeta}, \mathrm{w}\right)+\longleftarrow \quad \begin{array}{l}
\text { lifted segment } \\
\text { pose regularizer }
\end{array} \\
& +\eta \mathfrak{E}_{\mathrm{r} . \mathrm{opt} .}(\mathrm{w})+\sum_{\zeta=3}^{|\mathrm{Z}|} \lambda_{\zeta} \mathfrak{E}_{\mathrm{c} .}\left(\mathrm{T}^{\zeta}\right) . \\
& \text { optimizer }
\end{aligned}
$$



oversegmentation

segment connectivity

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights


## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights

lifting function $\mathscr{F}(\cdot, \mathbf{w})=\sum\left(w_{i}^{2}(\cdot)+\left(1-w_{i}^{2}\right)\right)$

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights


## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights


## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights


optimization over multiple frames

## Proposed Approach

vector of frame-to-frame segment transformations
segment-to-segment connectivity weights


Huber norm:

$$
\left\|a^{2}\right\|_{\epsilon}= \begin{cases}\frac{1}{2} a^{2}, & \text { for }|a| \leq \epsilon \\ \epsilon\left(|a|-\frac{1}{2} \epsilon\right), & \text { otherwise }\end{cases}
$$

## Results

In the experimental evaluation we use:

- MPI SINTEL [1]
- virtual KITTI [2]
- Bonn multibody data set [3]
- own RGB-D recordings
... and compare the following methods:
- Primal-Dual Flow [4]
- Semi-Rigid Scene Flow [5]
- Multi-Frame Optical FLow [6]
- tv-l1 optical flow [7]
[1] D. J. Butler et al. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
[2] A. Gaidon et al. Virtual worlds as proxy for multi-object tracking analysis. In CVPR, 2016.
[3] J. Stueckler and S. Behnke. Efficient dense rigid-body motion segmentation and estimation in rgb-d video. IJCV, 2015.
[4] M. Jaimez et al. A primal-dual framework for real-time dense rgb-d scene flow. In ICRA, 2015.
[5] J. Quiroga et al. Dense semi-rigid scene flow estimation from RGBD images. In ECCV, 2014.
[6] B. Taetz et al. Occlusion-aware video registration for highly non-rigid objects. In WACV, 2016.
[7] C. Zach et al. A duality based approach for realtime tv-l1 optical flow. In GCPR, 2007.


## Results

In the experimental evaluation we use:

- MPI SINTEL [1]
- virtual KITTI [2]
- Bonn multibody data set [3]
- own RGB-D recordings
... and compare the following methods:
- Primal-Dual Flow [4]
- Semi-Rigid Scene Flow [5]
- Multi-Frame Optical FLow [6]
- tv-l1 optical flow [7]

End Point Error is defined as $\quad\left\|\left(u-u_{\mathrm{GT}}\right),\left(v-v_{\mathrm{GT}}\right)\right\|$

$$
\begin{array}{ll}
(u, v)^{\top} & \text { is a projected flow vector } \\
\left(u_{\mathrm{GT}}, v_{\mathrm{GT}}\right)^{\top} & \text { is a ground truth vector }
\end{array}
$$

[1] D. J. Butler et al. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
[2] A. Gaidon et al. Virtual worlds as proxy for multi-object tracking analysis. In CVPR, 2016.
[3] J. Stueckler and S. Behnke. Efficient dense rigid-body motion segmentation and estimation in rgb-d video. IJCV, 2015.
[4] M. Jaimez et al. A primal-dual framework for real-time dense rgb-d scene flow. In ICRA, 2015.
[5] J. Quiroga et al. Dense semi-rigid scene flow estimation from RGBD images. In ECCV, 2014.
[6] B. Taetz et al. Occlusion-aware video registration for highly non-rigid objects. In WACV, 2016.
[7] C. Zach et al. A duality based approach for realtime tv-l1 optical flow. In GCPR, 2007.

## Results



|  | alleyl | bandage1 | sleeping2, rigid |
| :--- | :--- | :--- | :--- |
| SRSF [ 5 ] | $2.46122 / 2.40833$ | $2.47801 / 2.46389$ | 1.13584 |
| MSF | 0.740127 | 1.69865 | 0.307526 |

## Results



## Conclusions and Future Work



We propose a new multiframe RGB-D scene flow approach
Main novelties:

- segmentation is obtained on the depth channel and kept fixed
- projective ICP term
- lifted segment pose regularizer

Next: combine MSF with semantic segmentation, test other energy terms

DFKI GmbH<br>Department Augmented Vision<br>Trippstadter Str. 122<br>D-67663 Kaiserslautern

## Thank you for your attention!

Vladislav Golyanik vladislav.golyanik@dfki.de

http://av.dfki.de

