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Abstract Recently, super-resolution methods for diffusion MRI capable of retriev-
ing high-resolution diffusion-weighted images were proposed, yielding a resolution
beyond the scanner hardware limitations. These techniques rely on acquiring either
one isotropic or several anisotropic low-resolution versions of each diffusion-
weighted image. In the present work, a variational formulation of joint super-
resolution of all diffusion-weighted images is presented which takes advantage of
interrelations between similar diffusion-weighted images. These interrelations allow
to use only one anisotropic low-resolution version of each diffusion-weighted image
and to retrieve its missing high-frequency components from other images which
have a similar q-space coordinate but a different resolution-anisotropy orientation.
An acquisition scheme that entails complementary resolution-anisotropy among
neighboring q-space points is introduced. High-resolution images are recovered
at reduced scan time requirements compared to state-of-the-art anisotropic super-
resolution methods. The introduced principles of joint super-resolution thus have
the potential to further improve the performance of super-resolution methods.
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1 Introduction

Diffusion MRI allows measuring the molecular self-diffusion of water in biological
tissue, and provides unique information on tissue microstructure unavailable to other
non-invasive imaging techniques. Diffusion MRI has the potential to improve the
diagnosis of, inter alia, multiple sclerosis [11], traumatic brain injury [26], and
many kinds of cancer [19]. This potential stems from its ability to determine the
macroscopic orientation and “bulk statistics” of diffusion within the underlying
microscopic cellular architecture. This is done by acquiring diffusion-weighted
images for different diffusion directions and diffusion weightings (constituting a
three-dimensional diffusion space, the q-space), and fitting a diffusion model to the
measurements. For details, please refer to [12, 13].

A major challenge in diffusion MRI is balancing between acquisition duration,
image resolution and signal-to-noise ratio (SNR). Numerous denoising methods
were proposed to increase SNR by incorporating prior knowledge into postprocess-
ing [15, 28] or directly into image reconstruction [10].

Another approach to improve the balance between scan time, resolution and SNR
is to increase image resolution via super-resolution techniques.

1.1 Non-diffusion MRI Super-Resolution

Numerous super-resolution methods are available for non-diffusion MRI [20, 29].
Notably, the total generalized variation (TGV) [2, 14] regularizer, which prevents
staircasing artifacts by modeling higher-order derivatives of the image, was applied
to super-resolution of isotropic low-resolution MRI volumes [17].

1.2 Diffusion MRI Super-Resolution

In contrast to conventional diffusion MRI techniques, super-resolution methods for
diffusion MRI exceed the scanner hardware limitations on image resolution.

Fiber-based methods reconstruct super-resolution information on nerve fiber
bundles from conventional diffusion MRI [4–6, 18], or enhance the resolution of
diffusion-weighted images by using estimated underlying nerve fiber orientations
for the super-resolution model [31].

Patch-based super-resolution [8] uses one isotropic low-resolution version of a
diffusion-weighted image, and performs super-resolution using self-similarity [3,
16, 24] of the image. In collaborative patch-based super-resolution [8], a high-
resolution non-diffusion-weighted image is used to retrieve high-frequency infor-
mation for the isotropic low-resolution diffusion-weighted image, in addition to the
self-similarity prior.
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The methods introduced by Scherrer et al. [25] and Poot et al. [22] use several
anisotropic low-resolution versions of each diffusion-weighted image with com-
plementary resolution-anisotropy orientations. Resolution anisotropy is achieved
by anisotropic k-space sampling, meaning that high frequencies are not sampled
for all directions equally. Subsequently, each high resolution diffusion-weighted
image is reconstructed independently by using the complementary high-frequency
information from the anisotropic low-resolution acquisitions. Several anisotropic
low-resolution acquisitions with different distortions are used in [23] for joint
susceptibility artifact correction and super-resolution.

Model-based super-resolution [27] introduces a framework to estimate high-
resolution parameter maps for an arbitrary diffusion model from several anisotropic
low-resolution versions of each diffusion-weighted image. As a proof of concept,
the authors use the ball-and-stick model [1] and apply the method to an in silico
phantom. Model-based super-resolution uses information from the entire q-space
simultaneously, and is shown to outperform independent super-resolution of indi-
vidual diffusion-weighted images. However, information on high frequencies is still
completely acquired for every q-space coordinate—several acquisitions per q-space
coordinate are used.

Three different combination schemes of q-space coordinates and resolution-
anisotropy orientations were proposed for tomographic reconstruction of diffusion
tensors [7]. However, the scheme that uses only one anisotropic acquisition per
q-space coordinate restricts the resolution-anisotropy orientation exactly to the
respective diffusion gradient direction.

We propose a super-resolution method for diffusion MRI that jointly recovers
high frequencies of all diffusion-weighted images, but requires only one anisotropic
low-resolution acquisition per q-space coordinate. The resolution-anisotropy ori-
entations are chosen such that neighbors in q-space possess complementary high-
frequency information, and regularization along q-space allows them to propagate
this information to each other.

2 Methods

Two formulations for joint super-resolution of five-dimensional data (2-D image
space and 3-D q-space) are introduced, relying on two respective imaging models:
the formation of low-resolution images from high-resolution images, or the for-
mation of acquired subsampled k-space raw data from underlying high-resolution
images.
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2.1 Image Formation Model

In the following, five-dimensional data are considered. The 5-D low-resolution
images y are formed from the high-resolution images � in the following way:

y D D� C �y ; (1)

where D is the blur and downsampling operator [8,27], and �y is the residual noise.
The model for the acquired k-space data d is

d D UFx!k� C �d ; (2)

where Fx!k is the Fourier transform from image space (x-space) to k-space
along two of the five data dimensions, U is the undersampling operator in k-space
(omitting high frequencies in a certain orientation), and �d is complex-valued i.i.d.
Gaussian noise.

2.2 k-q Acquisition Scheme

For the present purpose, coordinates in q-space are sampled on a regular Cartesian
grid up to a maximum diffusion weighting bmax, as in diffusion spectrum imaging
(DSI) [30]. For each q-space point, only one anisotropic low-resolution image is
acquired by omitting high frequencies in k-space in one direction, see Fig. 1. The
resolution-anisotropy directions are chosen such that neighboring points in q-space
contain complementary high-frequency information. For an image lacking vertical
high frequencies, all of its six Cartesian-grid q-space neighbors contain vertical
high frequencies but lack horizontal high frequencies—and vice versa. Figure 2
illustrates this relationship.

2.3 Joint Super-Resolution

We perform super-resolution for all diffusion-weighted images jointly. The data
in our formulation is thus five-dimensional (2-D image space and 3-D q-space).
TGV [2, 14] along all five data dimensions is applied as a regularization term. This
regularization has a threefold effect:

• Regularization along q-space propagates complementary high-frequency infor-
mation between q-space-neighboring diffusion-weighted images of different
resolution-anisotropy orientations (Fig. 2).
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Fig. 1 Sampling scheme in joint k-q space. The six large squares correspond to q-space DSI
coordinates qz D �5 : : : 0 (coordinates qz D 1 : : : 5 analogous to qz D �1 : : : � 5 not
depicted). The small squares within each large square correspond to coordinates qx D �5 : : : 5,
qy D �5 : : : 5. The small squares depict sampled (white) and unsampled (gray) k-space points
for each q-space coordinate. Sampling anisotropy in k-space results in resolution anisotropy in
image space, and the anisotropy orientations are chosen such that neighbors in q-space have
complementary high-frequency information in horizontal and vertical directions (cf. Fig. 2)

• The image model of TGV introduces prior knowledge capable of retrieving
missing high frequencies when regularizing along image space in a super-
resolution framework [17].

• TGV regularization along five dimensions reconstructs missing information in
5-D space and reduces noise [9].

Second-order TGV is a piecewise-smooth image model, formulated [2, 14] as

TGV.�/ D min
v

Z
˝

˛1jr� � vjd x C ˛0

Z
˝

jE .v/jd x ; (3)

where E .v/ D 1
2

�rv C rvT
�

is the symmetrized derivative, ˛1 and ˛0 are
regularization parameters, and ˝ is the image domain (field of view). TGV balances
the first and second derivatives of the image via the vector field v, allowing both
affine regions and edges.
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Fig. 2 Detail of a low-resolution image (middle) and its six neighbors in Cartesian q-space along
qx (left, right), along qy (bottom, top) and along qz (red, green). The middle image lacks horizontal
resolution, but its six q-space neighbors all have high horizontal resolution, and the information
they contain is propagated to the middle image in iterative joint super-resolution via regularization
along q-space. The same principle analogously applies to images lacking vertical resolution.
Middle image taken from DSI q-space coordinate .qx; qy; qz/ D .0; �3; 1/

Joint super-resolution is formulated in a variational framework. To estimate high-
resolution images O� from low-resolution images y formed according to the model in
Eq. (1), the following optimization problem is solved:

O� D arg min
�

kD� � yk2
2 C TGV.�/ : (4)

To obtain high-resolution 5-D image estimates O� from raw k-space data d formed
according to the imaging model in Eq. (2), the following optimization problem is
solved:

O� D arg min
�

kUFx!k� � dk2
2 C TGV.�/ : (5)

In both cases, solutions are obtained with a first-order primal-dual algorithm [21].
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2.4 Experiments

As a proof of concept, the resolution of a healthy volunteer scan was retrospectively
reduced according to the scheme described in Sect. 2.2. In this way, comparison
to the original high-resolution data was possible. The scan was performed using a
single coil on a 3T GE MR750 clinical MR scanner (GE Healthcare, Milwaukee,
WI, USA) with the following imaging parameters: TR D 2535 ms, TE D 93:3 ms,
515 DSI q-space coordinates within the sphere inscribed in a 11 � 11 � 11 Cartesian
grid, bmax D 2000 s/mm2, voxel size 1:875 � 1:875 � 4 mm. Thus, the artificially
downsampled resolution was 1:875 � 3:75 � 4 mm and 3:75 � 1:875 � 4 mm,
depending on q-space coordinate, cf. Fig. 1. Informed consent was obtained.

Joint super-resolution from low-resolution image space, Eq. (4), and from low-
resolution (undersampled) k-space data, Eq. (5), was performed.

3 Results

Joint super-resolution results are shown in Fig. 3. Joint super-resolution, especially
from k-space data d, largely removes low-resolution artefacts which manifest
themselves as underestimations and overestimations (blue and red in the bottom
rows of Fig. 3) of the true signal around salient image features.

Six of the acquired 515 q-space coordinates, namely .qx; qy; qz/ D .˙5; 0; 0/,
.0; ˙5; 0/ and .0; 0; ˙5/, have only one neighbor in q-space. We observed that low-
resolution artefacts remained at these coordinates (not shown). Due to this issue,
but also for the sake of optimization of the entire protocol, adaptive regularizers
and/or further development of the sampling scheme might be beneficial for joint
super-resolution.

Peak signal to noise ratio (PSNR) was calculated, which is defined as

PSNR D 20 log10.MAX=RMSE/ ; (6)

where MAX is the maximal intensity of the image and RMSE is the root mean
squared error of the image compared to the high-resolution original. PSNR was
40:69 dB for low-resolution images, which could be improved to 41:33 dB for
joint super-resolution images reconstructed from low-resolution images via the
optimization problem (4), and 41:37 dB for joint super-resolution from k-space data
by solving (5). Since the original high-resolution image is noisy, its noise is also
captured in the calculation of PSNR, preventing the distinction between noise and
low-resolution artifact removal. However, artifacts are visibly removed by the joint
super-resolution method, cf. Fig. 3.

Besides, the denoising effect [9] of regularization of the five-dimensional data
can also be observed in our results (joint super-resolution results contain less noise
than the original high-resolution images, and a great part of the incoherent noise in
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Fig. 3 Comparison of low-resolution images, high-resolution images retrieved by joint super-
resolution, and original high-resolution images with full k-space coverage. Error maps compared
to the high-resolution original are shown in the third and fourth row. DSI q-space coordinate
.qx; qy; qz/ D .0; �3; 1/ is shown

the error maps, Fig. 3, is caused by noise in the original high-resolution image). This
indicates that the improved stability to noise when using TGV for super-resolution
as reported in [17] also benefits joint super-resolution.

4 Discussion and Conclusions

Two formulations for joint super-resolution of 5-D data were introduced along with
a k-q acquisition scheme. Joint super-resolution from k-space, Eq. (5), outperformed
joint super-resolution from low-resolution image space, Eq. (4), in terms of PSNR
and visual image quality. This result can be attributed inter alia to an imperfect
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approximation of D in the image space model, cf. [8, 22, 25, 27]. Both joint super-
resolution formulations were able to enhance fine details in diffusion-weighted
images.

All in all, acquiring only one anisotropic image per q-space point strongly
reduces the imaging time compared to state-of-the-art super-resolution techniques.
We demonstrated that it is feasible to retrieve missing high-resolution information
using an appropriate regularization and complementary resolution-anisotropy orien-
tations among q-space neighbors.

With this scan time reduction in prospect, future work may focus on optimizing
the protocol in terms of motion and distortion compensation [22, 25], q-space
coordinates, maximal b-value, anisotropy orientations and downsampling factors
in order to match a realistic clinical setting and compare the performance of joint
super-resolution to state-of-the-art super-resolution methods. From the discussed
results we conclude that the introduced principles of joint super-resolution have the
potential to further improve the performance of super-resolution methods.

Acknowledgements Grant support: Deutsche Telekom Foundation.
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