Square Root Bundle Adjustment for Large-Scale Reconstruction

Nikolaus Demmel Christiane Sommer

Daniel Cremers Vladyslav Usenko

Technical University of Munich

{nikolaus .demmel, c.sommer, cremers,vlad. usenko}@tum. de

Abstract

We propose a new formulation for the bundle adjustment
problem which relies on nullspace marginalization of land-
mark variables by QR decomposition. Our approach, which
we call square root bundle adjustment, is algebraically
equivalent to the commonly used Schur complement trick,
improves the numeric stability of computations, and allows
for solving large-scale bundle adjustment problems with
single-precision floating-point numbers. We show in real-
world experiments with the BAL datasets that even in single
precision the proposed solver achieves on average equally
accurate solutions compared to Schur complement solvers
using double precision. It runs significantly faster, but can
require larger amounts of memory on dense problems. The
proposed formulation relies on simple linear algebra op-
erations and opens the way for efficient implementations
of bundle adjustment on hardware platforms optimized for
single-precision linear algebra processing.

1. Introduction

Bundle adjustment (BA) is a core component of many
3D reconstruction algorithms and structure-from-motion
(SfM) pipelines. It is one of the classical computer vi-
sion problems and has been investigated by researchers for
more than six decades [7]. While different formulations ex-
ist, the underlying question is always the same: given a
set of approximate point (landmark) positions that are ob-
served from a number of cameras in different poses, what
are the actual landmark positions and camera poses? One
can already compute accurate 3D positions with only a few
images; however, with more available images we will get
a more complete reconstruction. With the emergence of
large-scale internet photo collections has come the need to
solve bundle adjustment on a large scale, i.e., for thousands
of images and hundreds of thousands of landmarks. This

This work was supported by the Munich Center for Machine Learn-
ing, by the ERC Advanced Grant SIMULACRON and by the DFG project
CR 250/20-1 “Splitting Methods for 3D Reconstruction and SLAM.”

Figure 1: Optimized 3D reconstruction of the largest venice
BAL dataset with 1778 cameras, around one million land-
marks, and five million observations. For this problem, the
proposed square root bundle adjustment (v BA) solver is
42% faster than the best competing method at reaching a
cost tolerance of 1%.

requires scalable solutions that are still efficient for large
problems and do not run into memory or runtime issues.

Modern BA solvers usually rely on the Schur comple-
ment (SC) trick that computes the normal equations of the
original BA problem and then breaks them down into two
smaller subproblems, namely (1) the solution for camera
poses and (2) finding optimal landmark positions. This
results in the drastically smaller reduced camera system
(RCS), which is also better-conditioned [2] than the origi-
nal normal equations. The use of the Schur complement has
become the de facto standard for solving large-scale bundle
adjustment and is hardly ever questioned.

In this work, we challenge the widely accepted assump-

tion of SC being the best choice for solving bundle adjust-
ment, and provide a detailed derivation and analysis of an
alternative problem reduction technique based on QR de-
composition. Inspired by similar approaches in the Kalman
filter literature [34], we factorize the landmark Jacobian
J; such that we can project the original problem onto the
nullspace of J;. Thus, we circumvent the computation
of the normal equations and their system matrix H, and
are able to directly compute a matrix square root of the
RCS while still solving an algebraically equivalent prob-
lem. This improves numerical stability of the reduction
step, which is of particular importance on hardware opti-
mized for single-precision floats. Following terminology
for nullspace marginalization on Kalman filters, we call our
method square root bundle adjustment, short v/BA. In par-
ticular, our contributions are as follows:

* We propose nullspace marginalization as an alternative
to the traditional Schur complement trick and prove
that it is algebraically equivalent.

* We closely link the very general theory of nullspace
marginalization to an efficient implementation strategy
that maximally exploits the specific structure of bundle
adjustment problems.

* We show that the algorithm is well parallelizable and
that the favorable numerical properties admit compu-
tation in single precision, resulting in an additional
twofold speedup.

* We perform extensive evaluation of the proposed ap-
proach on the Bundle Adjustment in the Large (BAL)
datasets and compare to the state-of-the-art optimiza-
tion framework Ceres.

* We release our implementation and complete evalua-
tion pipeline as open source to make our experiments
reproducible and facilitate further research:
https://go.vision.in.tum.de/rootba.

2. Related work

We propose a way to solve large-scale bundle adjustment
using QR decomposition, so we review both works on bun-
dle adjustment (with a focus on large-scale problems) and
works that use QR decomposition for other tasks in com-
puter vision and robotics. For a general introduction to nu-
merical algorithms (including QR decomposition and itera-
tive methods for solving linear systems), we refer to [5, 15].

(Large-scale) bundle adjustment A detailed overview of
bundle adjustment in general can be found in [31], includ-
ing an explanation of the Schur complement (SC) reduction
technique [7] to marginalize landmark variables. Byrod and
Astrém use the method of conjugate gradients (CG) on the
normal equations [17, 6] to minimize the linearized least
squares problem without the Schur complement [8]. They

also QR-decompose the Jacobian, but only for block pre-
conditioning without marginalizing landmarks. Agarwal
et al. have proposed preconditioned CG on the RCS after
SC to solve the large-scale case [2], and Wu et al. further ex-
tend these ideas to a formulation which avoids explicit com-
putation of the SC matrix [32]. A whole number of other
works have proposed ways to further improve efficiency,
accuracy and/or robustness of BA [13, 21, 20, 35, 27], all
of them using the Schur complement. More recently, in
Stochastic BA [36] the reduced system matrix is further de-
composed into subproblems to improve scalability. Sev-
eral open source BA implementations are available, e.g.,
the SBA package [24], the g20 framework [22], or Ceres
Solver [1], which has become a standard tool for solving
BA-like problems in both academia and industry.

Nullspace marginalization, square root filters, and QR
decomposition The concept of nullspace marginalization
has been used in contexts other than BA, e.g., for the multi-
state constraint Kalman filter [26] and earlier in [3]. [34]
proves the equivalence of nullspace marginalization and the
Schur complement in the specific case of robot SLAM.
Several works explicitly point out the advantage of ma-
trix square roots in state estimation [25, 4, 11, 33], but to
the best of our knowledge matrix square roots have not yet
been used for problem size reduction in BA. The QRkit [30]
emphasizes the benefits of QR decomposition for sparse
problems in general and also mentions BA as a possible
application, but the very specific structure of BA prob-
lems and the involved matrices is not addressed. The or-
thogonal projector used in the Variable Projection (VarPro)
method [28, 18] is related to the nullspace marginalization
in our approach. However, VarPro focuses on separable
non-linear least squares problems, which do not include
standard BA. While [18] mentions the use of QR decom-
position to improve numeric stability, we take it one ste

further by more efficiently multiplyinjg in-place with @,
rather than explicitly with 7 — Q;Q, (further discussed
in Section 4.3). This also enables our very efficient way
to compute landmark damping (not used in VarPro). Our
landmark blocks can be seen as a specific instance of Smart
Factors proposed in [10], where nullspace projection with
explicit SVD decomposition is considered. Instead of the
re-triangulation in [10], we suggest updating the landmarks
with back substitution. The factor grouping in [9] allows to
mix explicit and implicit SC. This idea is orthogonal to our
approach and could be considered in future work.

3. QR decomposition

We briefly introduce the QR decomposition, which can
be computed using Givens rotations (see appendix). For
further background, we refer the reader to textbooks on least
squares problems (e.g., [5]). Let A be an m X n matrix

https://go.vision.in.tum.de/rootba

of full rank with m > n, i.e., rank(A) = n. A can be
decomposed into an m X m orthogonal matrix) and an
m X m upper triangular matrix R. As the bottom (m — n)
rows of R are zeros, we can partition R and Q:

a—or=a(P) =@ @) () -amn. o

where R; is an n X n upper triangular matrix, (); is m x n,
and), is m x (m — n). Note that this partitioning of @ di-
rectly implies that the columns of ()5 form the left nullspace
of A,i.e., QQTA = 0. Since @ is orthogonal, we have

Q'Q=1,=QQ",)

where I, is the m x m identity matrix. From (2) we derive:
Q=1 Q@=L ., QQ=0 0
@01 =1, — Q:Q; - @

4. Square root bundle adjustment

We assume a very general form of bundle adjustment,
similar to [2]: let = be a state vector containing all the opti-
mization variables. We can subdivide x into a pose part x,,
containing extrinsic and possibly intrinsic camera param-
eters for all n,, images (index 4), and a landmark part z,
consisting of the 3D coordinates of all n; landmarks (index
7). The total bundle adjustment energy is a sum of squared
residuals

E(xpaxl) = Z Z Tij(xpvxl)Q = ||7‘(.13p,$l)”2, (5)
)

i jEO(i

where j € O(7) means that landmark j is observed in frame
i and r(x) is the concatenation of all residuals r;; into one
vector. We call the total number of residuals /V,.. For a
pose dimensionality d,,, the length of the total state vector
(xp, ;) is dyn, + 3n; =: N, + 3n;. Typically, d, = 6 if
only extrinsic camera parameters need to be estimated, and
d,, = 9 if intrinsic calibration is also unknown.

4.1. Least squares problem

The energy in (5) is usually minimized by the
Levenberg-Marquardt algorithm, which is based on lin-
earizing r(z) around the current state estimate 0 =
(xg, mlo) and then solving a damped linearized problem

2

r g,
min|[{ 0| +{VAD, 0 <iﬁp> =
“1\o 0 VD !

. Ax 2 (6)
p
Aiﬂ}‘&wl(”” (p 1) (sz> I

L AID, Ay 2 + AnDlean) ,

ith r = 0 — or —_ or _
with r = r(z7), J, = Doy | 0" J, = der | 0 and Ax =

z—2°. Here, Mis a damping coefficient and D, and D, are
diagonal damping matrices for pose and landmark variables
(often D? = diag(J " J)).

To simplify notation, in this section we consider the un-
damped problem (i.e., A = 0) and discuss the efficient ap-
plication of damping in Section 5.3. The undamped prob-
lem in (6) can be solved by forming the corresponding nor-
mal equation

PRICORDIN
Hlp H” —Al'l bl ’

where
Hyy =Ty Jpo Hy=J"J). @®)
Hy =J, J,=H,, 9)
by=Jyr, b=J'r. (10)

The system matrix [of this problem is of size (I, + 3n,)%,
which can become impractically large (millions of rows and
columns) for problems like those in [2] (see Figure 1 for an
example).

4.2. Schur complement (SC)

A very common way to solve (7) is by applying the Schur
complement trick (see e.g., [7, 2, 32]): we form the RCS

H,,(-Az,) =b,, (11)

with
Hyy = Hyp = HyHyg Hyy (12)
b, = b, — Hy, H;'b, . (13)

The solution Ax; of (11) is the same as the pose compo-
nent of the solution of (7), but now the system matrix has
a much more tractable size of N; , which is usually in the
order of thousands x thousands. Note that as H;; is block-
diagonal with blocks of size 3 x 3, the multiplication with
H lfl is cheap. Given an optimal pose update Ax;, the op-
timal landmark update is found by back substitution

—Azj = Hy ' (b — Hyy(—Axp)). (14)
4.3. Nullspace marginalization (NM)

Using QR decomposition on J; = @QR, and the invari-
ance of the L2 norm under orthogonal transformations, we
can rewrite the term in (6):

Az, 2
I+) (32)]1

Az
= Q"+ (QTJp QTJ1> (A;;> I* s
= ”QIT + QIJprp + Rlele
Qa7 + Qs T, Az, |17

Q;'-Jp R QlTr

(2) (b) (©)

Figure 2: Dense landmark blocks. (a) Sparsity structure of the pose Jacobian is fixed during the optimization. Non-zero
elements shown in blue, potentially non-zero elements after Givens QR shown in gray, and elements that will always stay
zero shown in white. (b) Dense storage for the outlined (red) landmark block that efficiently stores all Jacobians and residuals
for a single landmark. (c) Same landmark block after in-place marginalization. As Givens rotations operate on individual

rows, marginalization can be performed for each landmark block separately, possibly in parallel.

As R, is invertible, for a given Ax;, the first term can al-
ways be set to zero (and thus minimized) by choosing

Azf = —Ry Q] r + Q] J,Az)). (16)
So (6) reduces to minimizing the second term in (15):

min Q3 7+ Q2 J, Ay || (17)
Tp

Again, this problem is of significantly smaller size than the
original one. However, as opposed to the (explicit) Schur
complement trick, we do not explicitly have to form the
Hessian matrix.

4.4. Equivalence of SC and NM

With the QR decomposition J; = Q1 R; used in the last
paragraphs, we get

Hy,,=J,J,, (18)
Hy = J, QR (19)
Hy = R{Q{Q\R, = R| Ry, (20)
b, =J, 1, Q1)
by=R Q. r. (22)

Using this, we can rewrite the Schur complement matrix
H,,, and vector b, and simplify with (4):

pr = Hy, — JJQlRl(RlTRl)ilRlTQIJp
=H,,—J, Iy, — Q:Q3)J, (23)
= Jp Q2Q5 J,,
by =b, = Jp QR (R{ R))'R{ Q[7 o
= Jp QaQar

Thus, the SC-reduced equation is nothing but the normal
equation of problem (17), which proves the algebraic equiv-
alence of the two marginalization techniques. Additionally,

we can show that the equations for back substitution for
Schur complement (14) and nullspace marginalization (16)
are also algebraically equivalent:

Azxf = —Hy (b + HyAx))
= —(R{ Ry) (R Q{7+ (J, Q1 R)) ' Az}) (25)

Ry (Q{r+Qf J,Az)).

Note that the above arguments also hold for the damped
problem (6), the difference being that the Hessian will have
an augmented diagonal and that the matrices in the QR de-
composition will have a larger size.

5. Implementation details

Bundle adjustment is a very structured problem, so we
can take advantage of the problem-specific matrix structures
to enable fast and memory-efficient computation.

5.1. Storage

We group the residuals by landmarks, such that J; has
block-sparse structure, where each block is ij x 3 with k;j
the number of observations for a particular landmark, see
Figure 2 (a). As each landmark is only observed by a subset
of cameras, the pose Jacobian J,, is also sparse.

We group the rows corresponding to each landmark and
store them in a separate dense memory block, which we
name a landmark block. We store only the blocks of the
pose Jacobian that correspond to the poses where the land-
mark was observed, because all other blocks will always be
zero. For convenience we also store the landmark’s Jaco-
bians and residuals in the same landmark block, as shown
in Figure 2 (b). This storage scheme can be applied both to
the undamped and the damped Jacobian (see Section 5.3 for
damping).

0/, RIOTr A R1OTr] o/, RIO/r
0, o,
ol 0lord — I = e oy 0 lOTr
22 2 Q;— Jp 0 Q;r PR 2
0 0 0 0

(a)

Figure 3: Illustration of the landmark damping in the Levenberg-Marquardt optimization. (a) We add three zero rows with
diagonal damping for landmarks to the marginalized landmark block. (b) With 6 Givens rotations we eliminate the values on
diagonal, which gives us a new landmark block with marginalized out landmark. (c) By applying the transposed rotations in
reverse order and zeroing out the diagonal we can bring the landmark block to the original state. Zero entries of the landmark
block are shown in white, parts that change are shown in green, and parts that stay unchanged are shown in blue.

5.2. QR decomposition

Applying a sequence of Givens rotations in-place trans-
forms the landmark block to the marginalized state shown
in Figure 2 (c). The bottom part corresponds to the reduced
camera system, and the top part can be used for back sub-
stitution. This transformation can be applied to each block
independently, possibly in parallel. We never have to ex-
plicitly store or compute the matrix); we simply apply the
sequence of Givens rotations to the landmark block one by
one, as they are computed. Note that alternatively we can
use three Householder reflections per landmark block, with
which we noticed a minor improvement in runtime.

5.3. Levenberg-Marquardt damping

The augmentation of the Jacobians by diagonal matrices
as used in (6) consists of two parts that we treat differently
to optimally exploit the nature of the BA problem in our
implementation.

Landmark damping We first look at damping the land-
mark variables: rather than actually attaching a large diag-
onal matrix v/AD); to the full landmark Jacobian .J;, we can
again work on the landmark block from Figure 2 (b) and
only attach a 3 x 3 sub-block there, see Figure 3 (a) and (b).
To simplify the expressions in figures, we slightly abuse no-
tation when considering a single landmark and denote the
corresponding parts of .J,, J; and r in the landmark block
by the same symbols. The matrices involved in the QR de-
composition of the undamped system are @, ()5, R, and
those for the damped system are marked with a hat. Note
that @) and Q are closely related; the additional three diag-
onal entries in the damped formulation can be zeroed using
only six Givens rotations, such that

=@ @-(3 % D)o o

where @), is a product of six Givens rotations. Thus, ap-
plying and removing landmark damping is computationally

cheap: we apply the Givens rotations one by one and store
them individually (rather than their product @)) to undo the
damping later. Figure 3 illustrates how this can be done in-
place on the already marginalized landmark block. This can
speed up LM’s backtracking, where a rejected increment is
recomputed with the same linearization, but with increased
damping. By contrast, for an explicit SC solver, changing
the damping would mean recomputing the Schur comple-
ment from scratch.

Pose damping Marginalizing landmarks using Givens ro-
tations in the damped formulation of (6) does not affect the
rows containing pose damping. Thus, it is still the origi-
nal diagonal matrix ﬁDP that we append to the bottom of
QT JIp:
a0,
=@, |- 27)
VAD,

In practice, we do not even have to append the block, but
can simply add the corresponding summand when evaluat-
ing matrix-vector multiplication for the CG iteration (28).

5.4. Conjugate gradient on normal equations

To solve for the optimal Ax; in small and medium sys-
tems, we could use dense or sparse QR decomposition of
the stacked QQT J, from landmark blocks to minimize the

linear least squares objective ||Qq J,Az, + Qs r||*. How-
ever, for large systems this approach is not feasible due to
the high computational cost. Instead, we use CG on the nor-
mal equations as proposed in [2]. Other iterative solvers like
LSQR [29] or LSMR [14] that can be more numerically sta-
ble than CG turned out to not improve stability for the case
of bundle adjustment [8].

CG accesses the normal equation matrix ffpp only by
multiplication with a vector v, which we can write as

Hyyv=(Q27,) (Q1J,v) +ADiv. (28

This multiplication can be efficiently implemented and well
parallelized using our array of landmark blocks. Thus, we
do not need to explicitly form the normal equations for the
reduced least squares problem.

Still, the CG part of our solver has the numerical prop-
erties of the normal equations (squared condition num-
ber compared to the marginal Jacobian QQT Jp). To avoid
numeric issues when using single-precision floating-point
numbers, we scale the columns of the full Jacobian to have
unit norm and use a block-Jacobi preconditioner, both stan-
dard procedures when solving BA problems and both also
used in the other evaluated solvers. We also note that with
the Levenberg-Marquardt algorithm, we solve a strictly pos-
itive definite damped system, which additionally improves
the numeric stability of the optimization.

Storing the information used in CG in square root form
allows us to make sure that f{pp is always strictly positive
definite. As we show with our experiments (see Section
6.4), for many sequences small round-off errors during SC
(explicit or implicit) render H pp t0 be numerically indefinite
with single-precision floating-point computations.

With the computed A:c; we can do back substitution for
each individual landmark block independently and in paral-
lel. We already have all the necessary information (Q;r Ips

R, QlTr) stored in the landmark blocks after marginaliza-
tion.

5.5. Parallel implementation

As pointed out above, the linearization, marginalization,
and back substitution can be computed independently for
each landmark block. There is no information shared be-
tween landmark blocks, so we can use a simple parallel for
loop to evenly distribute the workload between all available
CPU cores. The matrix-vector multiplications that consti-
tute the most computationally expensive part of CG can also
be efficiently parallelized. In this case, multiplication re-
sults of individual landmark blocks have to be summed, so
we employ the common parallel reduce pattern. How effec-
tive these simple parallelization schemes are is underlined
by our evaluation, which shows excellent runtime perfor-
mance of the square root bundle adjustment implementa-
tion, compared to both our custom and Ceres’ SC solvers.

6. Experimental evaluation
6.1. Algorithms and setup

We implement our v/ B A solver in C++ in single (v BA-
32) and double (v/BA-64) floating-point precision and
compare it to the methods proposed in [2] as implemented
in Ceres Solver [1]. This solver library is popular in the
computer vision and robotics community, since it is ma-
ture, performance-tuned, and offers many linear solver vari-
ations. That makes it a relevant and challenging baseline

CHCIN g

B¥TLIIES
solver implementation custom Ceres
float precision sidisi d
landmark marginalization| NM SC SC
RCS storage LMB: H |-iH

Table 1: The evaluated solvers—proposed and baseline—
are implemented either completely in our custom code
base, or using Ceres, with single (s) or double (d) floating-
point precision, using Nullspace (NM) or Schur comple-
ment (SC)-based marginalization of landmarks, and stor-
ing the reduced camera system sparsely in landmark blocks
(LMB), sparsely as a reduced Hessian (H), or not at all (—).

to benchmark our implementation against. While Ceres is
a general-purpose solver, it is very good at exploiting the
specific problem structure as it was built with BAL prob-
lems in mind. Our main competing algorithms are Ceres’
sparse Schur complement solvers, which solve the RCS it-
eratively by either explicitly saving flpp in memory as a
block-sparse matrix (ceres-explicit), or otherwise comput-
ing it on the fly during the iterations (ceres-implicit). In
both cases, the same block-diagonal of ﬁpp that we use in
Vv BA is used as preconditioner. As the bottleneck is not
computing Jacobians, but marginalizing points and the CG
iterations, we use analytic Jacobians for our custom solvers
and Ceres’ exact and efficient autodiff with dual numbers.
For an even more direct comparison, we additionally imple-
ment the sparse iterative explicit Schur complement solver
without Ceres, sharing much of the code with our VBA
implementation. While Ceres always uses double preci-
sion, we use our custom implementation to evaluate numer-
ical stability by considering single (explicit-32) and double
(explicit-64) precision. Table 1 summarizes the evaluated
configurations.

For Ceres we use default options, unless otherwise speci-
fied. This includes the scaling of Jacobian columns to avoid
numerical issues [2]. Just like in our custom implementa-
tion, we configure the number of threads to be equal to the
number of (virtual) CPU cores. Our Levenberg-Marquardt
loop is in line with Ceres: starting with initial value 1074,
we update the damping factor A according to the ratio of
actual and expected cost reduction, and run it for at most 50
iterations, terminating early if a relative function tolerance
of 107° is reached. In the inner CG loop we use the same
forcing sequence as Ceres, with a maximum of 500 itera-
tions and no minimum. We run experiments on an Ubuntu

tolerance T = 0.1

tolerance T = 0.01

tolerance T = 0.001

100 A

percentage
percentage

ol

100 A

— VBA-32 (ours)

VBA-64 (ours)
----- explicit-32
-== explicit-64
— = ceres-implicit
~~~~~ ceres-explicit

percentage

12 5

relative time a

relative time a

10 15 12 5 10 15
relative time a

Figure 4: Performance profiles for all BAL datasets show percentage of problems solved to a given accuracy tolerance 7
with increasing relative runtime . Our proposed v/ B A solver outperforms other methods across all accuracy tolerances. In
single precision, the solver is about twice as fast as with double, but does not lose in accuracy, underpinning the favorable
numerical properties of the square root formulation. In contrast, while the SC solver in double precision is equally accurate,
this is not the case for the single-precision variant. Keep in mind that Ceres is not as tailored to the exact problem setup as
our custom implementation, possibly explaining its slower performance. Note that the performance profiles are cut off at the

right side of the plots to show only the most relevant parts.

18.04 desktop with 64GB RAM and an Intel Xeon W-2133
with 12 virtual cores at 3.60GHz. In our own solver imple-
mentation we rely on Eigen [16] for dense linear algebra

and TBB[19] for simple parallel for and parallel reduce
constructs.
6.2. Datasets

For our extensive evaluation we use all 97 bundle adjust-
ment problems from the BAL [2] project page. These con-
stitute initialized bundle adjustment problems and come in
different groups: the trafalgar, dubrovnik, and venice prob-
lems originate from successive iterations in a skeletal SfM
reconstruction of internet image collections [30]. They are
combined with additional leaf images, which results in the
thus denser final problems. The ladybug sequences are re-
constructions from a moving camera, but despite this we al-
ways model all camera intrinsics as independent, using the
suggested Snavely projection model with one focal length
and two distortion parameters. Figure 5 visualizes some ex-
emplar problems after they have been optimized.

As is common, we apply simple gauge normalization as
preprocessing: we center the point cloud of landmarks at
the coordinate system origin and rescale to median absolute
deviation of 100. Initial landmark and camera positions are
then perturbed with small Gaussian noise. To avoid close-
to-invalid state, we remove all observations with a small or
negative z value in the camera frame, completely removing
landmarks with less than two remaining observations. We
additionally employ the Huber norm with a parameter of
1 pixel for residuals (implemented with IRLS as in Ceres).
This preprocessing essentially follows Ceres’ BAL exam-
ples. It is deterministic and identical for all solvers by using
a fixed random seed and being computed on state in double
precision, regardless of solver configuration.

6.3. Performance profiles

When evaluating a solver, we are primarily interested in
accurate optimization results. Since we do not have inde-
pendent ground truth of correct camera positions, intrinsics,
and landmark locations, we use the bundle adjustment cost
as a proxy for accuracy. Lower cost in general corresponds
to better solutions. But depending on the application, we
may desire in particular low runtime, which can be a trade-
off with accuracy. The difficulty lies in judging the perfor-
mance across several orders of magnitudes in problem sizes,
cost values, and runtimes (for the BAL datasets the number
of cameras n,, ranges from 16 to 13682). As proposed in
prior work [23, 12], we therefore use performance profiles
to evaluate both accuracy and runtime jointly. The perfor-
mance profile of a given solver maps the relative runtime «
(relative to the fastest solver for each problem and accu-
racy) to the percentage of problems solved to accuracy 7.
The curve is monotonically increasing, starting on the left
with the percentage of problems for which the solver is the
fastest, and ending on the right with the percentage of prob-
lems on which it achieves the accuracy 7 at all. The curve
that is more to the left indicates better runtime and the curve
that is more to the top indicates higher accuracy. A precise
definition of performance profiles is found in the appendix.

6.4. Analysis

Figure 4 shows the performance profiles with all BAL
datasets for a range of tolerances 7 € {10~',107%,107%}.
We can see that our proposed square root bundle adjustment
solver v/ BA-64 is very competitive, yielding better accu-
racy than some SC-based iterative solvers, and often at a
lower runtime. v/ BA-32 is around twice as fast and equally
accurate, which highlights the good numerical stability of
the square root formulation. It clearly outperforms all other



trafalgarl70

x10% ladybug138 x10% venicell58 %107 final4585
04 |1
7.0 —— VBA-32 (ours) e VBA-32 (ours) VBA-32 (ours) 1 —— VBA-32 (ours)
TR — 8.04 |: — —
60401 VBA-64 (ours) VBA-64 (ours) VBA-64 (ours) 04 —— VBA-64 (ours)
----- explicit-32 : explicit-32 explicit-32 ég ] oo explicit-32
5047 : —-—- explicit-64 7.04 [ explicit-64 explicit-64 8_{5 1 --- explicit-64
—-= ceres-implicit ceres-implicit ceres-implicit 0:5 | —-= ceres-implicit
4.0 || e ceres-explicit ceres-explicit ceres-explicit 044y ceres-explicit
6.0 - S i T ———
= 0.3 4
0.0 0.5 1.0 1.5 2.0 0 2 4 40 60 80 0 250 500 750 1000

time [s] time [s]

time [s] time [s]

Figure 5: Convergence plots from small to large problems and rendered optimized landmark point clouds. The y-axes show
the total BA cost (log scale), and the horizontal lines indicate cost thresholds for the tolerances 7 € {10_17 10_2, 10_3}.

1.24 « VBA-32 (ours)

1.0 VBA-64 (ours)
= +  explicit-32
9089 .+ explicit-64 ut®
g‘ 0.6 + ceres-implicit TN ; 38
€ «  ceres-explicit Lsts g3t
£ IEETEERHE pea
£ 0.4 L T e et et

RS R
0.2 g ##1
001 ** '

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
#observations (millions)

Figure 6: Memory consumption for the relatively sparse la-
dybug problems grows linearly with the problem size. The
number of cameras here ranges from 49 to 1723.

solvers across all tolerances. The fact that explicit-32 does
not always reach the same accuracy as its double precision
counterpart explicit-64 indicates that SC-based solvers do
not exhibit the same numerical stability. We also do not ob-
serve the same twofold speedup, which is related to the fact
that explicit-32 does have to backtrack in the LM loop sig-
nificantly more often to increase damping when the Schur
complement matrix becomes indefinite due to round-off er-
rors. This happens at least once for 84 out of the 97 prob-
lems with explicit-32 and even with explicit-64 for 7 of the
problems. With v/BA, we have never encountered this.

A similar conclusion can be drawn from the convergence
plots in Figure 5, which show a range of differently sized
problems. For the small ladybug as well as the medium
and large skeletal problems, our solver is faster. Even on
the large and much more dense final4585, the square root
solver is competitive. In the square root formulation mem-
ory and thus to some degree also runtime grows larger
for denser problems—in the sense of number of observa-

tions per landmark—since a specific landmark block grows
quadratically in size with the number of its observations.
This is in contrast to density in the sense of number of cam-
eras co-observing at least one common landmark, as for the
SC. Still, across all BAL datasets, only for the largest prob-
lem, finall3682, where the landmarks have up to 1748 ob-
servations, does \/ﬂ-SZ run out of memory. For sparse
problems, such as ladybug, one can see in Figure 6 that the
memory grows linearly with the number of landmarks, and
for v/BA-32 is similar to Ceres’ iterative SC solvers. In
summary, while for very small problems we expect direct
solvers to be faster than any of the iterative solvers, and for
very large and dense problems implicit SC solvers scale bet-
ter due to their memory efficiency [2], the proposed v BA
solver outperforms alternatives for medium to large prob-
lems, i.e., the majority of the BAL dataset.

7. Conclusion

We present an alternative way to solve large-scale bun-
dle adjustment that marginalizes landmarks without having
to compute any blocks of the Hessian matrix. Our square
root approach /BA displays several advantages over the
standard Schur complement, in terms of speed, accuracy,
and numerical stability. We have combined a very general
theoretical derivation of nullspace marginalization with a
tailored implementation that maximally exploits the spe-
cific structure of BA problems. Experiments comparing
our solver to both a custom SC implementation and the
state-of-the-art Ceres library show how v/BA can handle
single-precision floating-point operations much better than
the Schur complement methods, outperforming all evalu-
ated competing approaches. We see great potential in v BA
to benefit other applications that play up to its strong perfor-
mance on sparse problems, for example incremental SLAM.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

Sameer Agarwal, Keir Mierle, and Others. Ceres solver.
http://ceres-solver.org. 2,6

Sameer Agarwal, Noah Snavely, Steven M Seitz, and
Richard Szeliski. Bundle adjustment in the large. In Euro-
pean Conference on Computer Vision (ECCV), pages 29-42.
Springer, 2010. 1,2, 3,5,6,7,8

David S Bayard and Paul B Brugarolas. An estimation algo-
rithm for vision-based exploration of small bodies in space.
In American Control Conference (ACC), pages 4589-4595.
IEEE, 2005. 2

Gerald J Bierman. Factorization methods for discrete se-
quential estimation. Courier Corporation, 2006. 2

Ake Bjorck. Numerical methods for least squares problems.
SIAM, 1996. 2

Ake Bjorck and Tommy Elfving. Accelerated projection
methods for computing pseudoinverse solutions of systems
of linear equations. BIT Numerical Mathematics, 19(2):145—
163, 1979. 2

Duane C Brown. A solution to the general problem of multi-
ple station analytical stereotriangulation. RCA-MTP data re-
duction technical report no. 43 (or AFMTC TR 58-8), Patrick
Airforce Base, Florida, 1958. 1, 2,3

Martin Byréd and Kalle Astrom. Conjugate gradient bundle
adjustment. In European Conference on Computer Vision
(ECCV), pages 114-127, 2010. 2, 5

Luca Carlone, Pablo Fernandez Alcantarilla, Han-Pang
Chiu, Zsolt Kira, and Frank Dellaert. Mining structure frag-
ments for smart bundle adjustment. In British Machine Vi-
sion Conference (BMVC), 2014. 2

Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and
Frank Dellaert. Eliminating conditionally independent sets
in factor graphs: A unifying perspective based on smart fac-
tors. In International Conference on Robotics and Automa-
tion (ICRA), pages 4290-4297. IEEE, 2014. 2

Frank Dellaert and Michael Kaess. Square Root SAM: Si-
multaneous localization and mapping via square root infor-
mation smoothing. The International Journal of Robotics
Research (IJRR), 25(12):1181-1203, 2006. 2

Elizabeth D Dolan and Jorge J Moré. Benchmarking opti-
mization software with performance profiles. Mathematical
programming, 91(2):201-213, 2002. 7

Chris Engels, Henrik Stewénius, and David Nistér. Bundle
adjustment rules. Photogrammetric computer vision, 2(32),
2006. 2

David Chin-Lung Fong and Michael Saunders. LSMR: An
iterative algorithm for sparse least-squares problems. SIAM
Journal on Scientific Computing, 33(5):2950-2971, 2011. 5
Gene H. Golub and Charles F. van Loan. Matrix Computa-
tions. JHU Press, fourth edition, 2013. 2, 11
Gaél Guennebaud, Benoit Jacob, et al
http://eigen.tuxfamily.org, 2010. 7

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conju-
gate gradients for solving linear systems. Journal of research
of the National Bureau of Standards, 49(6):409-436, 1952.
2

J. H. Hong, C. Zach, and A. Fitzgibbon. Revisiting the vari-
able projection method for separable nonlinear least squares

Eigen v3.

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

problems. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5939-5947, 2017. 2
Intel. Threading building
http://threadingbuildingblocks.org, 2006. 7
Yekeun Jeong, David Nister, Drew Steedly, Richard Szeliski,
and In-So Kweon. Pushing the envelope of modern methods
for bundle adjustment. Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 34(8):1605-1617, 2011. 2
Kurt Konolige and Willow Garage. Sparse sparse bundle
adjustment. In British Machine Vision Conference (BMVC),
volume 10, pages 102-1, 2010. 2

Rainer Kiimmerle, Giorgio Grisetti, Hauke Strasdat, Kurt
Konolige, and Wolfram Burgard. g2o: A general frame-
work for graph optimization. In International Conference on
Robotics and Automation (ICRA), pages 3607-3613. IEEE,
2011. 2

Avanish Kushal and Sameer Agarwal. Visibility based pre-
conditioning for bundle adjustment. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1442—
1449. IEEE, 2012. 7

Manolis IA Lourakis and Antonis A Argyros. SBA: A soft-
ware package for generic sparse bundle adjustment. ACM
Transactions on Mathematical Software (TOMS), 36(1):1-
30, 2009. 2

Peter S Maybeck. Stochastic models, estimation, and con-
trol. Academic press, 1982. 2

blocks.

A. L. Mourikis and S. I. Roumeliotis. A multi-state constraint
Kalman filter for vision-aided inertial navigation. In Inter-
national Conference on Robotics and Automation (ICRA),
pages 3565-3572, April 2007. 2

Karthikeyan Natesan Ramamurthy, Chung-Ching Lin, Alek-
sandr Aravkin, Sharath Pankanti, and Raphael Viguier. Dis-
tributed bundle adjustment. In International Conference
on Computer Vision Workshop (ICCVW), pages 2146-2154,
2017. 2

T. Okatani, T. Yoshida, and K. Deguchi. Efficient algorithm
for low-rank matrix factorization with missing components
and performance comparison of latest algorithms. In In-
ternational Conference on Computer Vision (ICCV), pages
842-849,2011. 2

Christopher C Paige and Michael A Saunders. LSQR:
An algorithm for sparse linear equations and sparse least
squares. ACM Transactions on Mathematical Software
(TOMS), 8(1):43-71,1982. 5

Jan Svoboda, Thomas Cashman, and Andrew Fitzgibbon.
QRKkit: Sparse, composable QR decompositions for efficient
and stable solutions to problems in computer vision. In Win-
ter Conference on Applications of Computer Vision (WACV),
pages 1263-1272. IEEE, 2018. 2, 7

Bill Triggs, Philip F McLauchlan, Richard I Hartley, and An-
drew W Fitzgibbon. Bundle adjustment—a modern synthe-
sis. In International workshop on vision algorithms, pages
298-372. Springer, 1999. 2

C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore
bundle adjustment. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3057-3064, June 2011.
2,3


http://ceres-solver.org

(33]

(34]

Kejian Wu, Ahmed Ahmed, Georgios A Georgiou, and Ster-
gios I Roumeliotis. A square root inverse filter for effi-
cient vision-aided inertial navigation on mobile devices. In
Robotics: Science and Systems (RSS), volume 2, 2015. 2
Yulin Yang, James Maley, and Guoquan Huang. Null-space-
based marginalization: Analysis and algorithm. In Inferna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 6749-6755. IEEE, 2017. 2

10

(35]

(36]

Christopher Zach. Robust bundle adjustment revisited. In
European Conference on Computer Vision (ECCV), pages
772-787. Springer, 2014. 2

Lei Zhou, Zixin Luo, Mingmin Zhen, Tianwei Shen, Shiwei
Li, Zhuofei Huang, Tian Fang, and Long Quan. Stochastic
bundle adjustment for efficient and scalable 3d reconstruc-
tion. In European Conference on Computer Vision (ECCV),
2020. 2



Supplementary Material

In this supplementary material we provide additional
background, analysis of computational complexity, and a
detailed account of the convergence of all solvers for each
of the 97 problems from the BAL dataset used in our eval-
uation. The latter are the same experiments that are aggre-
gated in performance profiles in Figure 4 of the main pa-
per. Section A includes a concise introduction to Givens
rotations and a definition of performance profiles. Sec-
tion B discusses the computational complexity of our QR-
based solver compared to the explicit and implicit Schur
complement solvers. Section C presents the size and den-
sity of all problems (tabulated in Section E). Finally, Sec-
tion D discusses the convergence plots (shown in Section F)
for all problems, grouped by ladybug (F.1), trafalgar (F.2),
dubrovnik (F.3), venice (F.4), and final (E.5).

A. Additional details

A.1. Givens rotations

The QR decomposition of a matrix A can be computed
using Givens rotations. A Givens rotation is represented by
a matrix G;;(6) that is equal to identity except for rows and
columns % and j, where it has the non-zero entries

9ii 9ij \ _ [ cosf  sinf
g]Z g]] B —Slne COSH ’

G;;(0) describes a rotation by angle ¢ in the ij-plane. The
multiplication of a matrix A with G;;(6) changes only two
rows in A, leaving all other rows unchanged. 6 can be cho-
sen such that the element (i, j) of G;;(6) A is zero:

(29)

Qs
cosf = sinf = J . (30

L L B
3
2 2 2 2
\/ @is + aij aj; + aij
By subsequent multiplication of A with Givens matrices,
all elements below the diagonal can be zeroed (see [15, p.

252] for the full algorithm). As all G;(¢) are orthogonal
by construction, their product matrix () is also orthogonal.

A.2. Performance profiles

Let P be a set of BA problems and S be the set of eval-
uated solvers which we run according to the termination
criteria (maximum number of iterations and function tol-
erance). For a given problem p € P and solver s € S,
we define the minimal cost value achieved by that solver
after time ¢ as f(p,s,t). The smallest achieved cost by

any solver for a specific problem is denoted by f*(p) :=
min, ; f(p, s,t), which we use to define for a chosen accu-

racy tolerance 0 < 7 < 1 the cost threshold

fr(0) = f (p) +7(folp) = £ (D)), (31

11

where f;(p) is the initial cost of problem p. The runtime for
solver s to achieve that threshold is

t,(p,s) :==min {t | f(p,s,t) < f,(p)} U{oc}. (32)
With this, the performance profile of a solver s is
t < ingt
b (o) i 100l 1P 5) S amin b )]

P

In other words, p. (s, a) maps the relative runtime « to the
percentage of problems that s has solved to accuracy 7. The
curve is monotonically increasing, starting on the left with
p-(s,1), the percentage of problems for which solver s is
the fastest, and ending on the right with max,, p, (s, ), the
percentage of problems on which the solver s achieves the
cost threshold f.(p) at all. Comparing different solvers, the
curve that is more to the left indicates better runtime and the
curve that is more to the top indicates higher accuracy.

B. Algorithm complexities

In Table 2, we compare the theoretical complexity of our
QR-based solver to the explicit and implicit Schur comple-
ment solvers in terms of number of poses T number of
landmarks n;, and mean p,, and variance 05 of the number
of observations per landmark. Note that the total number 7,
of observations equals w,n;. While most of the entries in
the table are easily determined, let us briefly walk through
the not so obvious ones:

V BA (our solver) Assume landmark j has k; observa-
tions. We can express the sum over kf by u, and 05:

ny

oo = Var({k;}) = Zk2 Z k)2, (34)
j:1
=k =mny(ul+00). (35)

j=1

The sum over kf appears in many parts of the algorithm, as
the dense landmark blocks (jp J; f) after QR decom-
position have size (2k; + 3) x (d,k; + 4), where the num-
ber of parameters per camera d,, is 9 in our experiments.
In the QR step, we need 6k; Givens rotations per land-
mark (out of which 6 are for the dampmg) and we mul-
tiply the dense landmark block by Q so we end up having



vV BA (ours) explicit SC implicit SC
outer iterations
Jacobian computation | O(p,n;) O(uony) O(uyny)
Hessian computation | 0 O(uyny) 0
QR O((us + o)) 0 0
middle iterations
damping O(u,ny) O(n; +n,) 0
sc 0 O((uy+o5)ny) 0
preconditioner O((2 + o2)n; + n,) O(n,) O(pony +ny)
back substitution O(u,ny) O(uyny) O(uony)
inner iterations
PCG O((u2 + o2)n; + n,) O(ni) (worst case)  O(u,n; +ny)

Table 2: Complexities of the different steps in our v/BA solver compared to the two SC solvers (explicit and implicit),
expressed only in terms of n, n,, 14,, and o,. We split the steps into three stages: outer iterations, i.e., everything that needs
to be done in order to setup the least squares problem (once per linearization); middle iterations, i.e., everything that needs to
be done within one Levenberg-Marquardt iteration (once per outer iteration if no backtracking is required or multiple times
if backtracking occurs); inner iterations, i.e., everything that happens within one PCG iteration.

terms O(3_; k;) and O(3_; k:f), leading to the complexity
stated in Table 2. For the block-diagonal preconditioner,
each landmark block contributes summands to k; diagonal
blocks, each of which needs a matrix multiplication with
O(k;) flops, thus we have a complexity of O(}_; kf) Pre-
conditioner inversion can be done block-wise and is thus
O(n,). In the PCG step, we can exploit the block-sparse

structure of QQij and again have the k;?—dependency. Be-
cause of the involved vectors being of size 2n,, + d,n,, (due
to pose damping), we additionally have a dependency on
2n, + dpnp. Finally, for the back substitution, we need to
solve n; upper-triangular 3 x 3 systems and then effectively
do n; multiplications of a (3 x d,k;) matrix with a vector,
which in total is of order O(}_, k;).

Explicit SC  The first step is the Hessian computation. As
each single residual only depends on one pose and one land-
mark, the Hessian computation scales with the number of
observations/residuals. Damping is a simple augmentation
of the diagonal and contributes terms O(n;) and O(n,,).
Matrix inversion of H;; for the Schur complement scales
linearly with n;, while the number of operations to multiply
H, by H ;1 scales with the number of non-zero sub-blocks
in Hy, and thus with n,. The multiplication of this prod-
uct with H;, involves matrix products of sub-blocks sized
(d, x 3) and (3 x d,,) for each camera pair that shares a
given landmark, i.e., (’)(k:?) matrix products for landmark
7. The preconditioner can simply be read off from ﬁpp,

12

and its inversion is the same as for v/BA. The matrices
and vectors involved in PCG all have size d,n,(xd,n,).
The sparsity of ﬁpp is not only determined by n,,, n;, .,
and o, but would require knowledge about which cameras
share at least one landmark. In the worst case, where each
pair of camera poses have at least one landmark they both
observe, flpp is dense. Thus, assuming ﬁpp as dense we
get quadratic dependence on n,,. Back substitution consists
of matrix inversion of n; blocks, and a simple matrix-vector
multiplication.

Implicit SC Since the Hessian matrix is not explicitly
computed, we need an extra step to compute the precon-
ditioner for implicit SC. For each pose, we have to compute
a d, x d, block for which the number of flops scales lin-
early with the number of observations of that pose, thus it
is O(n,) in total. Preconditioner damping contributes the
n,-dependency. As no matrices except for the precondi-
tioner are precomputed for the PCG iterations, but sparsity
can again be exploited to avoid quadratic complexities, this
part of the algorithm scales linearly with all three numbers
(assuming the outer loop for the preconditioner computa-
tion is a parallel for over cameras, rather than a parallel
reduce over landmarks). Lastly, back substitution is again
only block-wise matrix inversion and matrix-vector multi-
plications. While avoiding a dependency on (ui + az)nl
in the asymptotic runtime seems appealing, the implicit SC
method computes a sequence of five sparse matrix-vector
products in each PCG iteration in addition to the precon-



ditioner multiplication, making it harder to parallelize than
the other two methods, which have only one (explicit SC)
or two (\/ﬂ) sparse matrix-vector products. Thus, the
benefit of implicit SC becomes apparent only for very large
problems. As our evaluation shows, for medium and large
problems, i.e. the majority in the BAL dataset, our v BA
solver is still superior in runtime.

C. Problem sizes

Table 3 in Section E details the size of the bundle adjust-
ment problem for each instance in the BAL dataset (grouped
into ladybug, the skeletal problems trafalgar, dubrovnik,
and venice, as well as the final problems). Besides num-
ber of cameras n,,, number of landmarks n;, and number of

observations n, = 1\2’", we also show indicators for prob-
lem density: the average number of observations per cam-
era #obs / cam (which equals n,. /n,,), as well as the average
number of observations per landmark #obs / Im, including
its standard deviation and maximum over all landmarks.

In particular, a high mean and variance of #obs / Im in-
dicates that our proposed v/ BA solver may require a large
amount of memory (see for example final961, finall936, fi-
nall3682), since the dense storage after marginalization in
a landmark block is quadratic in the number of observa-
tions of that landmark. If on the other hand the problems
are sparse and the number of observations is moderate, the
memory required by v/BA grows only linearly in the num-
ber of observations, similar to SC-based solvers (see Fig-
ure 6 in the main paper).

D. Convergence

In Section F, each row of plots corresponds to one of
the 97 bundle adjustment problems and contains from left
to right a plot of optimized cost by runtime (like Figure 5

13

in the main paper) and by iteration, trust-region size (in-
verse of the damping factor \) by iteration, number of CG
iterations by (outer) iteration, and peak memory usage by
iteration. The cost plots are cut off at the top and horizontal
lines indicate the cost thresholds corresponding to accuracy
tolerances 7 € {107',107%,107%} as used in the perfor-
mance profiles. The plot by runtime is additionally cut off
on the right at the time the fastest solver for the respective
problem terminated.

We make a few observations that additionally support
our claims in the main paper: all solvers usually converge
to a similar cost, but for most problems our proposed v/ BA
solver is the fastest to reduce the cost. On the other hand,
memory use can be higher, depending on problem size and
density (see Section C). Missing plots indicate that the re-
spective solver ran out of memory, which for example for
v/ BA-32 happens only on the largest problem finall3682,

where the landmarks have up to 1748 observations. Our
single precision solver v/ BA-32 runs around twice as fast

as its double precision counterpart, since it is numerically
stable and usually requires a comparable number of CG it-
erations. This is in contrast to our custom SC solver, where
the twofold speedup for single precision is generally not ob-
served. The good numeric properties are further supported
by the evolution of the trust-region size approximately fol-
lowing that of the other solvers in most cases. Finally,
for the smallest problems (e.g., ladybug49, trafalgar2l, fi-
nal93), the evolution of cost, trust-region size, and even
number of CG iterations is often identical for all solvers
for the initial 5 to 15 iterations, before numeric differences
become noticeable. This supports the fact that the differ-
ent marginalization strategies are algebraically equivalent
and that our custom solver implementation uses the same
Levenberg-Marquardt strategy and CG forcing sequence as
Ceres.



E. Problem sizes table

#cam #lm #obs #obs / cam #obs / Im

(ny) (ny) (n,) mean mean std-dev  max
ladybug49 49 7,766 31,812 649.2 4.1 33 29
ladybug73 73 11,022 46,091 631.4 4.2 3.7 40
ladybug138 138 19,867 85,184 617.3 4.3 4.4 48
ladybug318 318 41,616 179,883 565.7 4.3 4.8 89
ladybug372 372 47,410 204,434 549.6 4.3 4.8 134
ladybug412 412 52,202 224,205 544.2 4.3 4.8 135
ladybug460 460 56,799 241,842 525.7 4.3 4.7 135
ladybug539 539 65,208 277,238 514.4 4.3 4.7 142
ladybug598 598 69,193 304,108 508.5 4.4 4.9 142
ladybug646 646 73,541 327,199 506.5 4.4 5.0 144
ladybug707 707 78,410 349,753 494.7 4.5 5.0 145
ladybug783 783 84,384 376,835 481.3 4.5 5.0 145
ladybug810 810 88,754 393,557 485.9 4.4 4.9 145
ladybug856 856 93,284 415,551 485.5 4.5 4.9 145
ladybug885 885 97,410 434,681 491.2 4.5 4.9 145
ladybug931 931 102,633 457,231 491.1 4.5 5.0 145
ladybug969 969 105,759 474,396 489.6 4.5 5.2 145
ladybug1064 1,064 113,589 509,982 479.3 4.5 5.1 145
ladybug1118 1,118 118,316 528,693 4729 4.5 5.1 145
ladybug1152 1,152 122,200 545,584 473.6 4.5 5.1 145
ladybug1197 1,197 126,257 563,496 470.8 4.5 5.1 145
ladybug1235 1,235 129,562 576,045 466.4 4.4 5.1 145
ladybug1266 1,266 132,521 587,701 464.2 4.4 5.0 145
ladybug1340 1,340 137,003 612,344 457.0 4.5 5.2 145
ladybug1469 1,469 145,116 641,383 436.6 4.4 5.1 145
ladybug1514 1,514 147,235 651,217 430.1 4.4 5.1 145
ladybug1587 1,587 150,760 663,019 417.8 4.4 5.1 145
ladybug1642 1,642 153,735 670,999 408.6 4.4 5.0 145
ladybug1695 1,695 155,621 676,317 399.0 43 5.0 145
ladybug1723 1,723 156,410 678,421 393.7 4.3 5.0 145

#cam #lm #obs #obs / cam #obs / Im

(nyp) (ny) (n,) mean mean std-dev  max
trafalgar21 21 11,315 36,455 1,736.0 3.2 1.8 15
trafalgar39 39 18,060 63,551 1,629.5 3.5 2.4 20
trafalgar50 50 20,431 73,967 1,479.3 3.6 2.7 21
trafalgar126 126 40,037 148,117 1,175.5 3.7 3.0 29
trafalgar138 138 44,033 165,688 1,200.6 3.8 33 32
trafalgar161 161 48,126 181,861 1,129.6 3.8 34 40
trafalgar170 170 49,267 185,604 1,091.8 3.8 3.5 41
trafalgar174 174 50,489 188,598 1,083.9 3.7 34 41
trafalgar193 193 53,101 196,315 1,017.2 3.7 34 42
trafalgar201 201 54,427 199,727 993.7 3.7 34 42
trafalgar206 206 54,562 200,504 973.3 3.7 34 42
trafalgar215 215 55,910 203,991 948.8 3.6 3.4 42
trafalgar225 225 57,665 208,411 926.3 3.6 33 42
trafalgar257 257 65,131 225,698 878.2 3.5 32 42

14



#cam #lm #obs #obs / cam #obs / Im
(ny) (ny) (n,) mean mean std-dev  max
dubrovnik16 16 22,106 83,718 5,232.4 3.8 2.2 14
dubrovnik88 88 64,298 383,937 4,362.9 6.0 6.0 65
dubrovnik135 135 90,642 552,949 4,095.9 6.1 7.1 84
dubrovnik142 142 93,602 565,223 3,980.4 6.0 7.1 84
dubrovnik150 150 95,821 567,738 3,784.9 5.9 6.9 84
dubrovnik161 161 103,832 591,343 3,672.9 5.7 6.7 84
dubrovnik173 173 111,908 633,894 3,664.1 5.7 6.7 84
dubrovnik182 182 116,770 668,030 3,670.5 5.7 6.9 85
dubrovnik202 202 132,796 750,977 3,717.7 5.7 6.7 91
dubrovnik237 237 154,414 857,656 3,618.8 5.6 6.6 99
dubrovnik253 253 163,691 898,485 3,551.3 5.5 6.6 102
dubrovnik262 262 169,354 919,020 3,507.7 54 6.5 106
dubrovnik273 273 176,305 942,302 3,451.7 5.3 6.5 112
dubrovnik287 287 182,023 970,624 3,382.0 5.3 6.5 120
dubrovnik308 308 195,089 1,044,529 3,391.3 54 6.3 121
dubrovnik356 356 226,729 1,254,598 3,524.2 5.5 6.4 122

#cam #lm #obs #obs / cam #obs / Im
(ny) (ny) (n,) mean mean std-dev  max
venice52 52 64,053 347,173 6,676.4 54 5.9 46
venice89 89 110,973 562,976 6,325.6 5.1 5.9 62
venice245 245 197,919 1,087,436 4,438.5 5.5 7.2 85
venice427 427 309,567 1,695,237 3,970.1 5.5 7.2 119
venice744 744 542,742 3,054,949 4,106.1 5.6 8.6 205
venice951 951 707,453 3,744,975 3,937.9 5.3 7.7 213
venicel102 1,102 779,640 4,048,424 3,673.7 5.2 7.5 221
venicel 158 1,158 802,093 4,126,104 3,563.1 5.1 74 223
venicel184 1,184 815,761 4,174,654 3,525.9 5.1 7.3 223
venicel238 1,238 842,712 4,286,111 3,462.1 5.1 7.3 224
venicel288 1,288 865,630 4,378,614 3,399.5 5.1 72 225
venicel350 1,350 893,894 4,512,735 3,342.8 5.0 7.1 225
venice1408 1,408 911,407 4,630,139 3,288.5 5.1 7.1 225
venice1425 1,425 916,072 4,652,920 3,265.2 5.1 7.1 225
venice1473 1,473 929,522 4,701,478 3,191.8 5.1 7.1 226
venice1490 1,490 934,449 4,717,420 3,166.1 5.0 7.1 228
venicel521 1,521 938,727 4,734,634 3,112.8 5.0 7.1 230
venicel544 1,544 941,585 4,745,797 3,073.7 5.0 7.1 231
venicel638 1,638 975,980 4,952,422 3,023.5 5.1 7.1 231
venicel666 1,666 083,088 4,982,752 2,990.8 5.1 7.2 231
venicel672 1,672 986,140 4,995,719 2,987.9 5.1 7.2 231
venicel681 1,681 982,593 4,962,448 2,952.1 5.1 7.2 231
venicel682 1,682 982,446 4,960,627 2,949.2 5.0 7.2 231
venicel 684 1,684 982,447 4,961,337 2,946.2 5.0 7.2 231
venice1695 1,695 983,867 4,966,552 2,930.1 5.0 7.2 231
venicel696 1,696 983,994 4,966,505 2,928.4 5.0 7.2 231
venicel706 1,706 984,707 4,970,241 2,913.4 5.0 72 232
venicel776 1,776 993,087 4,997,468 2,813.9 5.0 7.1 232
venicel778 1,778 993,101 4,997,555 2,810.8 5.0 7.1 232

#cam #lm #obs #obs / cam #obs / Im

15



(ny) (ny) (n,) mean mean std-dev  max
final93 93 61,203 287,451 3,090.9 4.7 5.8 80
final394 394 100,368 534,408 1,356.4 5.3 10.6 280
final871 871 527,480 2,785,016 3,197.5 53 9.8 245

961
1,936
3,068
4,585

13,682

final961
final1936
final3068
final4585
final13682

187,103
649,672
310,846
1,324,548
4,455,575

1,692,975
5,213,731
1,653,045
9,124,880
28,973,703

1,761.7
2,693.0

538.8
1,990.2
2,117.7

9.0
8.0
53
6.9
6.5

29.3
26.9
12.6
12.6
18.9

839

1293

414
535

1748

Table 3: Size of the bundle adjustment problem for each instance in the BAL dataset.

F. Convergence plots

F.1. Ladybug

ladybug49
x10%
102
— 150 1
3.0 — VBA-32 (ours) | ¢ 10% 1 ) -
— 2 1]
— VBasatours) | § o E £ 10
" T | E—— explicit-32 < & 1007 5
8 8 ——- explicit-64 S 100 g £ 10°4
—-= ceres-implicit £ £ 504 E
----- ceres-explicit § 106 4 F 3210" | R
- - - —_— —_— o x 02—
0.0 0.2 0.4 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
ladybug73
4 4
><1|0 x10° 102
304 i 304 — VBA-32 (ours) 9 10% 4 1004 =
X ! . — 2 1]
1 — VBasa (ours) | § o 2 £ 10
" i g [t explicit-32 < 2 S L0
g20q)i 8 2.0 explicit-64 S 100 g g 109
1 ceres-implicit £ £ E
i ’\ ----- ceres-explicit é 106 % §
ol A\
T T T T T T T T T T T T T T T T T T T T 1072 T T T T T
0.00 0.25 0.50 0.75 1.00 o 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
ladybug138
4
8.0 x 10° 102
—— VBA- 1015 4 —_
7.04 \E 32 (ours) 8 g .,
6.0 — VBA-64 (ours) | g0 ¢ 10ty
P | explicit-32 c 5
8 5.0 ——- explicit-64 2 100 § 109
— -~ ceres-implicit g E
1L i % o lg==
4.0 ceres-explicit E 106 4 § 10 m
\Z . §
T T T T T T T T T T T T T T T T T 1072 T T T T T
1 2 o 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
ladybug318
x10* 102
— VBA-32 (ours) |y 100 =
Irvy 5 O 1014
—— VBA-64 (ours) B 1012 =
2ol explicit-32 s E o
891 ——- explicit-64 2 109 £ 10°4
8 —-= ceres-implicit g E v T
74y e ceres-explicit § 106 4 © 107t ={
=] (=% [
6 -
T T T T T T T T T T T T T T 1072 T T T T T
4 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
time [s] iteration iteration iteration iteration

16



cost

cost

cost

cost

cost

ladybug372

4 4
x10 Lkl 106 10
—
—— VBA-32 (ours) E 5 g .
—— VBA-64 (ours) | T 10%- 2 2 10
e
o explicit-32 c 8 z
8 explicit-64 2107 g £
9 9 ceres-implicit g £ E
P i} a2
8 8 ceres-explicit E 100 Y E
- ——
7 T 7 T T T T y v v v v v v T 1072 y v v T
0 1 2 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
ladybug412
4
%10 1016 102
—— VBA-32 (ours) 9 o
2 1012 4 o
—— VBA-64 (ours) ® 10 % g 10t
e
5 e explicit-32 c 1004 ] g
3 explicit-64 2 ] £ 10°
ceres-implicit g 10% 4 £ E i
9 ceres-explicit g ) 107t {
s - 5 100 a
T T T T T T T T 1072 T T T T
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
ladybug460
x10%
2.0 = ; 10?
—— VBA-32 (ours) 9 . 80 i T
—— VBA-64 (ours) ] %eo i E 10
P | explicit-32 s 2 l 5 "
8 ——- explicit-64 2 § a0 i §
—-= ceres-implicit g £ E
----- ceres-explicit g F 20 ] 1071 {
s a
0.94 -\ o !
T T T T T T T T T T T 1072 T T T T
0 1 2 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
ladybug539
5 5
2.4 780 24720 102
22+ — VBA-32 (ours) |« 102 =
2.04 —_— 2 @ O 10t
1.8 —— VBA-64 (ours) B e 2 <z
o6l explicit-32 c 0 2 g5
o1 i S b4 £ 10°
S 14 explicit-64 =3 6 5 S
.44 P ]
ceres-implicit E 10 £ 5 it
1.2 A ceres-explicit 3 10° i 107§
= a
T T T T T T T T 102 T T T T
0 2 4 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
ladybug598
x10°% 2
275 — 10
2.50 —— VBA-32 (ours) 9 1010 . 300 = .
2.254 —— VBA-64 (ours) B 1094 % g 104
= g | — - explicit-32 c 22001 g
g 1754 === explicit-64 2 10°4 3 £ 10°4
1.50 —:= ceres-implicit g 1041 £ 100 4 E it
----- ceres-explicit g i g 107t ¢
1.254 5 1024 a
— e — L s —— 1072 ——
0 2 4 0 10 20 30 40 50 [ 10 20 30 40 50 0 10 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
ladybug646
x10° x10°
T 500 10%
3.0 — VBA-32 (ours) w =
— 2 5 400 8 10
~—— VBA-64 (ours) B 2 Z
%0 explicit-32 c @ 300 2
s -7 explicit-64 2 g E 10°
P o c 200 £ | ettt
— = ceres-implicit = = < f'
----- ceres-explicit ﬁ % 100 glo" N
B —————
— ——— 0 ——— 1072 ——
[ 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

time [s]

iteration

iteration

17

iteration

iteration



3.0

cost

2.0

time [s]

cost

time [s]

x10°
3.0
@ h
38 b
2,040
T T T
0 5 10 15
time [s]
x10%
4.0 T
t
3.04KE
3
9 H
8 i E
2.0 3
B
oy T
0 5 10
time [s]

cost

10 15
time [s]

cost

time [s]

3.0

cost

2.0

x10%

ladybug707

—— VBA-32 (ours)

—— VBA-64 (ours)

explicit-32

=== explicit-64

1 —-- ceres-implicit
- ceres-explicit

trust region radius

1073

#it linear solver

peak memory [GB]

T T T T

20 30 40
iteration

50

20 30
iteration

40 50

ladybug783

iteration

T T T T

20 30 40
iteration

50

VBA-32 (ours)
VBA-64 (ours)

cost

explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

iteration

x10°

20 30 40
iteration

50

ladybug810

0 10 20 30 40
iteration

50

102

20 30 40
iteration

50

3.0

VBA-32 (ours)
VBA-64 (ours)

cost

2.04

----- explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

=
o
o

-
o
=3

«
=)

100 4

1071

peak memory [GB]

0 10

x10%
0

20 30 40
iteration

50

20 30 40
iteration

50

ladybug856

1072

50
iteration

iteration

3.0

cost

2.04

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

1010

trust region radius
=
)
>

#it linear solver

peak memory [GB]

20 30 40
iteration

50

x10%

30
iteration

ladybug885

iteration

iteration

4.0

3.04

cost

2.0+

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

10%2

1010

trust region radius

#it linear solver

peak memory [GB]

20 30 40
iteration

50

30
iteration

ladybug931

iteration

iteration

cost

2.0+

X
T
4.04]
i
3.0-!
i

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

30
iteration

40 50

iteration

18

iteration

iteration



cost

cost

cost

cost

cost

cost

15 20
time [s]
2.0 So

T T T T
00 25 50 7.5

time [s]

: T

10 15

time [s]

50 7.5

time [s]

10 15 20
time [s]

time [s]

cost

cost

cost

cost

cost

cost

x10°

ladybug969

4.0 4

VBA-32 (ours)
VBA-64 (ours)

3.04

2.04

explicit-32
explicit-64
ceres-implicit
ceres-explicit

A
o o
1) 2 2
2 5 %

trust region radius
-
°~

#it linear solver

peak memory [GB]

T T T T

30 40
iteration

50

50
iteration

ladybug1064

iteration

T T T T

10 20 30 40
iteration

50

VBA-32 (ours)
VBA-64 (ours)

explicit-32
explicit-64
ceres-implicit
ceres-explicit

H
E oo ow
18 g

trust region radius

H
<

#it linear solver

peak memory [GB]

30 40
iteration

50

iteration

ladybug1118

iteration

10 20 30 40
iteration

50

50T

4.0

VBA-32 (ours)
VBA-64 (ours)

3.0

----- explicit-32
explicit-64
ceres-implicit
ceres-explicit

2.04

- -
=) o
= ES

trust region radius
=
3

#it linear solver

peak memory [GB]

30 40
iteration

50

x10%

30
iteration

50

ladybug1152

iteration

10 20 30 40
iteration

50

5.04

4.0

3.04

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

300

3

peak memory [GB]

2.0

30 40
iteration

50

x10%

iteration

ladybug1197

iteration

10 20 30 40
iteration

50

5.0 4

4.0

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

30
iteration

40 50

20 30 40
iteration

50

ladybug1235

iteration

10 20 30 40
iteration

50

5.0 4

4.0

VBA-32 (ours)
VBA-64 (ours)

3.0

explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

20 30 40
iteration

50

20 30
iteration

19

iteration

10 20 30 40
iteration

50



cost

cost

cost

cost

cost

time [s]

0 10 20 30
time [s]
x10°
6.0
5.0
4.0
3.0
E
T : T
0 10 20
time [s]
x10%
t
6.0 [f 1
t
5.0 '
\
4.0 1
1
A
304 |§Y
0 10 20

time [s]

7.0
6.0
5.0
4.0
3.0
0 10 20
time [s]

50 7.5

time [s]

0.0 25 10.0

cost

cost

cost

cost

cost

ladybug1266

102
— VBA-32 (ours) 9 = I
= 1
—— VBA-64 (ours) 2 % '—f: 10
jud
----- explicit-32 c 2 s
——- explicit-64 2 g £
3.0 —-- ceres-implicit 8 £ E
ceres-explicit g % ]
5 S
————s ————— 1072 ————s
o 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
ladybug1340
x10°
6.0 T 108 500 102
—— VBA-32 (ours) 0w =
5.0 1 — 3 . )
—— VBA-64 (ours) B 10° %400 % 10t
e
204 explicit-32 c % 300 s
- explicit-64 ‘?.‘, 102 2 200 ‘,E,
304 —-= ceres-implicit = i £ E
: ceres-explicit % 10 i / £ 100 o
i L/ Q
v 0 -2
T T T T T T T T 10 T T T T
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
ladybug1469
5
oo x10 s00 102
: — VBA-32 (ours) 9 I
— 2 @ 4 1
5.0 —— VBA-64 (ours) | B e 2 10
a0l explicit-32 c 2300 E
. ——- explicit-64 2 % 500 £
—:= ceres-implicit E £ E
3.04 e ceres-explicit E 10-15 % 100 E
0 10-2
T v v T T v v T T v v T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration iteration iteration
ladybug1514
10?
500
— VBA-32 (ours) 9 107 = =
5.0 —— VBA-64 (ours) | T 105 %400 9 10t
explicit-32 5 108 2300 g o
4.0 4 explicit-64 - e 200 uE, 10
ceres-implicit T £ E
3.0 ceres-explicit 3 ¥ 100 g 107
51070 a
— —— 0 10-2 —
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration iteration iteration
ladybug1587
5
7.0 282 102
—
4 — - 5 —
6.0 vﬁ 32 (ours) H] 10 5 150 g 10t
5.0 ~—— VBA-64 (ours) B N 2 =
e explicit-32 c 10 100 g
404 | ——- explicit-64 2 g £ 10°
| —:= ceres-implicit E 10t £ s E
H L = =
304 | ceres-explicit é . fry s 107!
Gy 10 a
e —— 0 1072 ———
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration iteration iteration
ladybug1642
5
7.0 xl(: 500 102
601 — VBA-32 (ours) | 4 10° Nt .
504 |1 —— VBA-64 (ours) | B 10 g 400
i explicit-32 c 3 300
404 | explicit-64 g 1w 5
! i plcl 2 2 200
H —-= ceres-implicit = 100 £
304 At ceres-explicit g 10-2 % 100
T T T T T T T T o T T T T
[ 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration iteration iteration

20



ladybug1695

><195 x10° | 102
6.0 6.0 4 — \/3-32 (ours) S 5 250 ! ,g )
50 504 —— VBA-64 (ours) g 2 200 i 2 1w
= P explicit-32 s 295 i 5
840 ] explicit-64 & ] £
ceres-implicit £ £1 E
i i o =
3.0 ceres-explicit g g E
TR
T T T T T ™ T T T T ™ ™ T 1072 ™ ™ T ™
0 5 10 15 20 o 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
ladybug1723
x10° x10° 2
7.0 7.0 — 10
— VBA- —
6.0 6.0 ‘ﬁ 32 (ours) 3 5 S .,
—— VBA-64 (ours) B 2 2 10
5.0 5.0 L e S >
= R B D explicit-32 s N g
S a0 S 4.0 - explicit-64 ® E g
. —-= ceres-implicit = £ E
3.0 3.0 K ceres-explicit é § E
T T T T T T T T T T T T T 1072 T T T T
0 5 10 15 20 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
F.2. Trafalgar
trafalgar21
x10% x104
8.0 T 8.0 — 25 50 o
7.0 ] 7.0 4 —— VBA-32 (ours) » 10 =
6.0 H 6.0 - 3 3 & 10
5.0 1 5.0 1 —— VBa-64 (ours) | F 0, 240 =
L 40 1 L 4.0 explicit-32 c @ g
8 3 i ) 530 £ 10°
S 3.0 k) S 3.0 explicit-64 B 100 s S
ceres-implicit £ £20 5
2.0 2.0 ceres-explicit S 106 %10 32-
. = AN 0
T T T T T T T T T T T T T T T T T 1072 T T T T
0.0 0.1 0.2 0.3 0.4 0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
trafalgar39
4 4
x10‘ x10 107
—
—— VBA-32 (ours) g 101 5 g X
—— VBA-64 (ours) | g gm0 2 2
e
% g = g explicit-32 s . 2 2 :
S6 S6 explicit-64 g, 10 3 s 10
5 5 ceres-implicit S £ E
4 4 ceres-explicit g i ]
3 3 5 10-2 a 7
T T T T T T ™ ™ T ™ ™ ™ ™ 1072 ™ ™ ™ ™
0.0 0.2 0.4 0.6 0.8 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
trafalgar50
5 5
20—X10 zo-xm 10?
' q ' —— VBA-32 (ours) 0 10" _ =
E — VBA- ] g 9 10!
1; VBA-64 (ours) 8 101 2 =
i) §§ ] H % gg 5 | R explicit-32 s a g ,
o 0.74 o 0.74 - icit- = © 10
RSN S 061 explicit64 2 10° ¢ g
0.5 4 k) 0.5 4 — -~ ceres-implicit = = <
0.4 4 \ 0.4 4 ceres-explicit g 106 F 4 101
034 LN 034 . & &
T T T T T T T T T ™ ™ T T 1072 ™ ™ T ™
0.00 0.25 0.50 0.75 1.00 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration
trafalgarl26
5 5
><1:) Xx10 " 102
30411 3.04 —— VBA-32 (ours) “ 10 _ =
204] ! 2.0 —— VBA-64 (ours) | T 10° 2 o 10
- 1 o [f— explicit-32 c " @ E
7 H g L s 10 © £ 10°
S i S —-=—- explicit-64 ) g S
g; ] §§_ —-- ceres-implicit 107! £ E
N 3 %2 | N ceres-explicit 3 = x
06 06 a E10¢ * a
05 051> .,
T T T T T T T T 1074 = T T T T
0 1 2 3 0 10 20 30 40 50 10 20 30 40 50
time [s] iteration iteration iteration iteration

21



x10°

u
=)

N
=)

F

time [s]

time [s]

cost

time [s]

[t
o o oo

cost

time [s]

time [s]

x10°
504] T
4.0
3.0

2.0

cost

time [s]

x10°

trafalgar138

VBA-32 (ours)
VBA-64 (ours)

explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

N
o
=3

w
=3
=3

N
=3
=3

-
o
=3

peak memory [GB]

T T T T

20 30 40
iteration

50

x10°

30
iteration

40 50

trafalgarl6l

iteration

iteration

VBA-32 (ours)
VBA-64 (ours)

explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius
bR e
5 o o
2 2

-
o
>

#it linear solver

peak memory [GB]

20 30 40
iteration

50

x10°

iteration

trafalgarl70

iteration

20 30
iteration

50

VBA-32 (ours)
VBA-64 (ours)

----- explicit-32
explicit-64
ceres-implicit
ceres-explicit

1014

- oe 5
> o 2
> 2 E

trust region radius

-
k3

#it linear solver

peak memory [GB]

30 40
iteration

50

x10%

iteration

trafalgarl74

iteration

1072 T T T T

20 30
iteration

40 50

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

1015

-
o

=
o
>

trust region radius
=
)
>

#it linear solver

peak memory [GB]

20 30 40
iteration

50

x10%

iteration

trafalgarl93

iteration

1072 T T T T
20 30 40
iteration

50

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

s o= B
s o 2
2 2% K

trust region radius

=
o
>

#it linear solver

peak memory [GB]

1072 T T T T

20 30
iteration

40

x10°

30
iteration

40 50

trafalgar201

iteration

20 30 40
iteration

50

5.0 4
4.04

3.0

VBA-32 (ours)
VBA-64 (ours)

2.0

cost

explicit-32
explicit-64
ceres-implicit
ceres-explicit

1

trust region radius
5 5 2
ES 2 &

-
=)
™

#it linear solver

peak memory [GB]

1072 T T T T

30
iteration

40 50

iteration

22

iteration

20 30
iteration

40 50



cost

cost

cost

o
@
<]
S

cost

cost

x10°

cost

5.0
4.0
3.0

2.0

cost

N W ohuo
o o ooo

cost

N W ko
©o o ooo

cost

time [s]

. Dubrovnik

x10°

trafalgar206

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

500

Now s
S o o
o © o

#it linear solver

-
o
=3

o

peak memory [GB]

x10°

T T

30 40
iteration

50

iteration

trafalgar215

iteration

10 20 30

iteration

40 50

5.04
4.0
3.04

2.0 1

— VBA-32 (ours)
—— VBA-64 (ours)
explicit-32
- explicit-64
— -~ ceres-implicit
ceres-explicit

T
> o o 2
2 % % R

trust region radius

=
o
>

N oW o v
S © o °
o © o o

#it linear solver

-
o
=3

o

peak memory [GB]

x10°

10

20 30 40
iteration

50

Now Ao
o o ooo

— VBA-32 (ours)
—— VBA-64 (ours)
explicit-32
=== explicit-64
— -~ ceres-implicit
ceres-explicit

x10%

T T
20 30 40

iteration

50

iteration

trafalgar225

iteration

1072 T T T T
0

10 20 30

iteration

40 50

1015

trust region radius

#it linear solver

peak memory [GB]

-
£

-
o

0 10 20 30 40
iteration

50

trafalgar257

iteration

1072 T T T T
20
iteration

50

o
b3

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

[T
o o
EN

trust region radius

Now B
o o ©°
o o ©

#it linear solver

-
o
=3

o

peak memory [GB]

=
A

o
2

i
=)
0

x10°
0+

20 30 40
iteration

50

iteration

dubrovnik16

iteration

,_.
2

20 30 40
iteration

50

— VBA-32 (ours)
—— VBA-64 (ours)

cost

explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

I}
2
S
2
&
53
£

peak memory [GB]

0.2
time [s]

cost

o
oAb
~

time [s]

x10°

T T T

T
16 24 32 40
iteration

T T
16 24
iteration

o
@

dubrovnik88

iteration

iteration

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

[
o o

-
o
©

trust region radius

-
o
>

[
2
o
a
©
o

peak memory [GB]

10

20 30 40
iteration

50

iteration

23

20 30
iteration

40 50

iteration



cost

cost cost cost cost
N W B Uio~o0 N W B vio~mo N W S UoDo N W A Voo

N W B vormo

cost

N W A no~mo

x10°

VBA-32 (ours)
VBA-64 (ours)

cost

W & VowIo

explicit-32
explicit-64
ceres-implicit
ceres-explicit

N}

T T T T

0 2 4 6
time [s]

T T T T

20 30 40
iteration

50

x10°

— VBA-32 (ours)
—— VBA-64 (ours)

cost

explicit-32
explicit-64
ceres-implicit
ceres-explicit

N W & vo~mo

T T
5.0 7.5

time [s]

20 30 40
iteration

50

x10°

VBA-32 (ours)
VBA-64 (ours)

cost

----- explicit-32
explicit-64
ceres-implicit
ceres-explicit

N W B Uvio~mo

time [s]

x10°

20 30 40
iteration

50

x10°

Sl ST e |

cost

N W A vo~Do

— VBA-32 (ours)
—— VBA-64 (ours)
B explicit-32
explicit-64
ceres-implicit
ceres-explicit

5.0 7.5 10.0

time [s]

0 10

20 30 40
iteration

50

x10°

cost

N W A vio~mo

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
- ceres-implicit
ceres-explicit

5.0
time [s]

7.5

10.0

20 30 40
iteration

50

x10°

VBA-32 (ours)
VBA-64 (ours)

cost

explicit-32
explicit-64
ceres-implicit
ceres-explicit

N W A Voo

5.0
time [s]

7.5

30
iteration

40 50

trust region radius

trust region radius

dubrovnik135

10?
. B
g 9 10
8 g
5 £
o [
] £
= x
% 5
a
1072 ™ ™ T T
0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration
dubrovnik142
10?
. z
g 9 10
8 g
5 £
o 1]
£ £
= ~
* 3
a

iteration

dubrovnik150

iteration

iteration

30
iteration

50

dubrovnik173

iteration

10

102
15
g 10 . T
s 2 o 10!
£ 10%2 4 °
c s g
S 10 ] §
g 10°4 £ g
o ~
T T T T 1072 T T T T
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration
dubrovnik161
102
15
g0 . z
§ 12 : 2w
£10% 4 o
c 8 g
.% 5 © £
g 10°1 £ g
3 = X
6 4
g 10 * g
1072

20 30
iteration

40 50

102
" —_
S . )
3 S 9 10!
< 3 g
9 5 £
g £ g
3 = X
3
] * 1
1072 T T T T
10 20 30 40 50
iteration iteration iteration
dubrovnik182
10?
«» 10% 4 =
3 .
3 1o 2 2
e E °
< s g
9 100 § g
g 10°4 2 E
k] = %
3 1064 * ?
Z 10 &

40 50

iteration

24

iteration

iteration



cost

cost

cost

cost

cost

cost

x10°

time [s]
0 5 10
time [s]
x10°
T
2.04):
t
t
gg i
pal
0.6 4P
0.54hE
0.44hy
0.34
(I) 1‘0 2‘0 3‘0
time [s]
x10°
2.04 '
T
t
E-;: £
74RE
640
054fE
0.4 4 3
ERR W
(I) 1‘0 2‘0
time [s]

0 10 20 30 40
time [s]
x10°8
T
2.0}
£
t
t
£
t
i
0 10 20 30
time [s]

cost

cost

cost

cost

cost

cost

x10°

dubrovnik202

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

1015

._.
"

5 2
2 &

-
=)
>

#it linear solver

N
a
o

N
=3
=)

-
o
=)

=
o
=3

5
=)

o

peak memory [GB]

T T T T

20 30 40
iteration

50

x10°

30
iteration

50

dubrovnik237

T T T

30
iteration

T T T T

20 30 40
iteration

50

— VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

[
o o
[ [

-
o
©

=
o
>

#it linear solver

peak memory [GB]

0 10 20 30 40
iteration

50

x10°

iteration

dubrovnik253

iteration

iteration

2.04 VBA-32 (ours)

VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

-
o
E

=
=)
™

#it linear solver

peak memory [GB]

0 10 20 30 40
iteration

50

X108

30
iteration

40 50

dubrovnik262

iteration

10 20 30 40
iteration

50

2.0 VBA-32 (ours)

VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

20 30 40
iteration

50

x10°

iteration

dubrovnik273

iteration

10 20 30 40
iteration

50

2.0 VBA-32 (ours)

VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

101
1012
10°

10°

#it linear solver

peak memory [GB]

20 30 40
iteration

50

x10°

iteration

dubrovnik287

iteration

iteration

2.04 VBA-32 (ours)

VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
41 e ceres-explicit

trust region radius

1015

#it linear solver

peak memory [GB]

20 30 40
iteration

50

20 30 40
iteration

50

25

iteration

30
iteration

40 50



cost

© © oo
W » Lo~k

cost

x10°

2.0+

Lo—.—.

T T

o 10

x10°

T T T

20 30 40
time [s]

[

T
20
time [s]

40

F.4. Venice

cost cost cost

w & U o ~Nwo

cost

x10°
R

x10°

time [s]

cost

o © o000
W » io~mo

cost

cost

cost

x10°

dubrovnik308

2.0+

VBA-32 (ours)
VBA-64 (ours)

explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

x10°

T T T

30 40
iteration

50

T T T

20 30 40
iteration

50

dubrovnik356

iteration

T T T T

10 20 30 40
iteration

50

3.04
2.04

VBA-32 (ours)
VBA-64 (ours)

explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

=
o o
>

=
o
™

#it linear solver

peak memory [GB]

x10°

40
iteration

50

40 50

iteration

venice52

iteration

10 20 30 40
iteration

50

4.0 A
3.0

VBA-32 (ours)
VBA-64 (ours)

2.0

explicit-32
explicit-64
ceres-implicit
ceres-explicit

0.9

trust region radius

#it linear solver

peak memory [GB]

x10°

20 30 40
iteration

50

iteration

venice89

iteration

iteration

6.0 4
5.04

4.0 A

VBA-32 (ours)
VBA-64 (ours)

3.0

2.04

explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

-
=)

-
o
£

=
2

=
<

#it linear solver

peak memory [GB]

x10°

T T T

20 30 40
iteration

50

cost

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

w A 0o N®o
-

x10°

30
time [s]

2.0

© o000
v o Noow

v
30
time [s]

cost

x10°

T T T

20 30 40
iteration

50

trust region radius

30
iteration

40 50

venice245

iteration

iteration

g
¢
)
3 300
5
&
£

peak memory [GB]

20 30
iteration

venice427

20
iteration

T T T T

20 30 40
iteration

50

2.04

— VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

=
o o
5 &

=
o
©

-
o
>

#it linear solver

peak memory [GB]

20 30 40
iteration

50

iteration

26

iteration

iteration



cost

cost.

cost

cost

cost

cost

o
7
o
S
T T
20 40
time [s]
o
7
o
S
v
80
o
7
o
S
T T T
0 50 100
time [s]
x10°
i
3
S
?
3
S
0.9 47 T T T T
0 20 40 60 80
time [s]
i
8
S

0
time [s]

venice744

6
x10 101! - 10?
4.0 4 'BA.- H —_
—— VBA-32 (ours) g _ 200 i =
3.0 — VBA-64 (ours) | Z 10° 2 s H 2
e
----- explicit-32 < - s
204 —-—- explicit-64 > 107 3 100 £
—-= ceres-implicit . £ E
ceres-explicit g 105 % 50 z 107!
5 o
0.91 M <A
0384 — ————— 0 —— 1072 ————s
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
venice951
6
_xlO 102
6.0 — 106
5.0 —— VBA-32 (ours) g . @
404 —— VBA-64 (ours) T e g )
£ 10 S >
3.04 explicit-32 c 2 s
explicit-64 & g £
20414 o 210 2 2
-‘ ceres-implicit = = <
. % = -1
H ceres-explicit 2 100 Y glo
A
0.9 T T T T T T T T 1072 T T T y
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
venicell02
6
gg %10 10
504 — VBA-32 (ours) ] 10° . Iy
4.0+ — VBAs4ours) | 0, 2 2
3.0 e explicit-32 S @ s
=== explicit-64 =3 101 5 ‘,E,
2.0 —-= ceres-implicit g £ £
..... lici g = %100
ceres-explicit 2 1071 g g
T T T T T T T T 1072 T T T T
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
venicell58
x10°
7.0 4 0 10?
g'g: —— VBA-32 (ours) i 10° = 5
2.0 — VBasatours) | R 2 2
30 explicit-32 s o g
explicit-64 '051. 10t e uE,
2.0 ceres-implicit 2 £ £
ici ] 2 s 10!
ceres-explicit g 10-1 ey ]
0.9 T T T T 1072 T T T T
0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
venicell84
x10°8
7.0 g 10?
g-g: —— VBA-32 (ours) a = =
4.0 —— VBA-64 (ours) 3 % 2
3,0 4| explicit-32 c N E
===~ explicit-64 'g, s uE:
2.0 —:= ceres-implicit g £ 5
i ceres-explicit E § s 107!
3 5 Q
0.9 T ; : — T v v T 1072 T v T y
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
venicel238
x10°8
2
7.0 10
gg N — VBA-32 (ours) 9 -
04 = 4 ©
4.0 —— VBA-64 (ours) k] 10 % Qe
3.0 explicit-32 S . n g
explicit-64 -?—,, 10 2 g
2.0 —-- ceres-implicit g £ 5
----- ceres-explicit 2 10° 4 © 107!
s Q
T T T T T T T T 1072 T T T T

30
iteration

40 50

20
iteration

27

iteration

10 20 30

iteration

40 50



x10°

cost

T T
0 50 100

time [s]

k]
o
8
T T T T T
0 25 50 75 100
time [s]
]
o
S
T T T T
0 50 100 150
time [s]
]
3
S
0 25 50 75 100
time [s]
B
3
S
0 50 100 150
time [s]
x108
84l
6.0 {hE
5.0 P
4.0 é
2 3
830 ;[
2.04 [
|
0 50 100 150 200
time [s]

cost

cost

cost

cost

cost

cost

x10°

venicel288

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

,_.
<

#it linear solver

peak memory [GB]

x10°

T T T

20 30 40 50
iteration

iteration

venicel350

T T T

0 10 20 30
iteration

T

40

50

T T T T

10 20 30 40 50
iteration

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

[
o o
2 S

=
£

trust region radius

#it linear solver

peak memory [GB]

x10°

20 30 40 50
iteration

iteration

venicel408

iteration

10 20 30 40 50
iteration

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

-
=)

trust region radius

#it linear solver

peak memory [GB]

x10°

10

20 30 40 50
iteration

iteration

venicel425

iteration

10 20 30 40 50
iteration

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

-
o
©

-
o
>

-
o
>

trust region radius
=
<

#it linear solver

peak memory [GB]

x10°

20 30 40 50
iteration

iteration

venicel473

iteration

10 20 30 40 50
iteration

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius
Boe e
o o o
> =) >

-
o
>

#it linear solver

peak memory [GB]

0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
venicel490
10°
?'S'X 102
Lo — VBA-32(ours) |y 10% N =
5.0 —— VBA-64 (ours) | T 10° B 2
401 explicit-32 c 3 z
3.04 icif S 10° © £
explicit-64 =) o &
2.0 —-= ceres-implicit g 103 £ 5
----- ceres-explicit E f g 107
5 100 Q
. . : : T —— T 1072 T v T T
[ 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50

iteration

iteration

28

iteration

iteration



cost

cost

venicel521
%108 x10°

=

5
5
-
i

] —— VBA-32 (ours) 200 .1
1 —— VBA-64 (ours)
----- explicit-32
=== explicit-64
2.0 — -~ ceres-implicit
- ceres-explicit

400

=
2

300

w B o~
© o oooco

cost

200

N
=)

#it linear solver

-
o

100

trust region radius
I
)
2

peak memory [GB]

-2
T T T T T T T T T T T T T T T 10 T T T T

0 50 100 150 o 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time [s] iteration iteration iteration iteration

venicel544
%108 x10°

2:§: —— VBA-32 (ours)
5.0 1 —— VBA-64 (ours)
----- explicit-32
- explicit-64

2.0 — -~ ceres-implicit
- ceres-explicit
|

0 10 20 30 40 50

w
o
cost
w
o

trust region radius
#it linear solver
peak memory [GB]

1072 T T T T
0 10 20 30 40 50

cost

cost

100 150 200

time [s]

cost

100 200

time [s]

cost

100 200
time [s]

cost

cost

cost

cost

x10°

iteration

iteration

venicel638

iteration

iteration

— VBA-32 (ours)
—— VBA-64 (ours)
----- explicit-32
=== explicit-64
— = ceres-implicit
----- ceres-explicit

-
o
>

-
o
=

—
o
>

trust region radius
=
3

#it linear solver

peak memory [GB]

x10°

20 30 40
iteration

iteration

venicel666

iteration

20 30 40 50

iteration

— VBA-32 (ours)
—— VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

LT e U T

trust region radius

=
<

"
26

-
=)

=
=)
0

#it linear solver

@
=3

o
=3

N
o

N
o

o

peak memory [GB]

x10°

iteration

iteration

venicel672

iteration

20 30 40 50

iteration

—— VBA-32 (ours)
—— VBA-64 (ours)
----- explicit-32
=== explicit-64
— = ceres-implicit
ceres-explicit

e
22 g8

trust region radius

-
o

#it linear solver

peak memory [GB]

x10°

iteration

iteration

venicel681

iteration

20 30 40 50

iteration

— VBA-32 (ours)
—— VBA-64 (ours)
explicit-32
explicit-64
— = ceres-implicit
----- ceres-explicit

trust region radius
B e
5 o o
2 2 ES

-
o
>

#it linear solver

peak memory [GB]

iteration

iteration

29

iteration

20 30 40 50

iteration



cost

cost

cost

cost

cost

cost

T T T
0 50 100 150

200
time [s]
T T T T
0 25 50 75
time [s]

100 150 200
time [s]

100 150 200
time [s]

100 150 200
time [s]

oA
o |
o

cost

cost

cost

cost

cost

cost

venicel682

6
gg 7x 10 108 10?
204 — VBA- —
& VBA-32 (ours) E 5 z
5.0 4 —— VBA-64 (ours) 3 2 =
4.0 i £ S z
----- explicit-32 s N °
3.0 1 ——- explicit-64 =3 ] £
— implicit 14 £ €
204l ceres-implici! - = >
.- ceres-explicit g 100 vy F ] 1071
o - - &
T T T T y v v T - 1072 y v v g
o 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
venicel684
x10° 102
31 —— -
&8 ‘ﬁ 32 (ours) E 5 g
5.0 —— VBA-64 (ours) B 2 <
4.0 ici = S z
explicit-32 S N o
3.0 1 - explicit-64 > 5 £
implicit 2 £ £
204 ceres-implici! - = >
: ceres-explicit 2 £ © 1071
] * 3
T T T T 1072 T T T T
0 10 20 30 40 50 10 20 30 40 50
iteration iteration iteration iteration
venicel695
x10° 10?
31 —— -
&8 \E 32 (ours) 8 5 g
5.0 1 —— VBA-64 (ours) k- 2 =
U | E— explicit-32 c N 5
3.0 ——- explicit-64 2 g £
—_ _implici o £ €
2.04 _\ ceres- |mpll.|c.|: = = £ 101
ceres-explici g * g
T T T T 1072 T T T T

x10°

10

30
iteration

40

50

iteration

venicel696

iteration

10 20 30

iteration

40 50

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

x10°

30 40
iteration

50

50
iteration

venicel706

iteration

10 20 30 40
iteration

50

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

x10°

30 40
iteration

50

50
iteration

venicel776

iteration

10 20 30 40
iteration

50

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

30 40
iteration

50

50
iteration

30

iteration

10 20 30 40
iteration

50



cost

cost

cost

cost

cost

x10°

. Final

T T
100 150

time [s]

T
200

cost

x10°

venicel778

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

#it linear solver

peak memory [GB]

x10°

T T T

20 30 40
iteration

50

iteration

final93

iteration

T

10

T T T

20 30 40
iteration

50

2.0+

VBA-32 (ours)
VBA-64 (ours)

/-,.-..m-"-"'“"""

cost

explicit-32
explicit-64
ceres-implicit
ceres-explicit

0.94

trust region radius

1015

10%?

-
=)
©

-
o
>

#it linear solver

peak memory [GB]

time [s]

30

time [s]

7
100

cost

cost

cost

x10°

iteration

0 6 12 18 24 30
iteration

final394

0 6 12 18
iteration

iteration

3.0

2.0

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

1015
10%2

10°

10°

500

#it linear solver
Now s
S & o
S & o

=
1)
=3

o

peak memory [GB]

x10°

30 40
iteration

50

30
iteration

40 50

finalg71

20 30 50

iteration

iteration

3.0+

2.0+

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

0.94

trust region radius

#it linear solver

peak memory [GB]

T T T

30 40
iteration

50

iteration

final961

iteration

10

T T T

20 30 40
iteration

50

x10°
0

VBA-32 (ours)
VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

trust region radius

1014

10t

2N W s v
o 9 9 °© o
S © © © o

#it linear solver

o

peak memory [GB]

x10°

20 30 40
iteration

50

30
iteration

40 50

final1936

20 30
iteration

10

20 30 40
iteration

50

x10°

6.0 4
5.0 4

—— VBA-32 (ours)
- ceres-implicit
-+ ceres-explicit

cost

4.0 4

3.04

trust region radius

1016
1013
1010

107

104

o
o

#it linear solver
N &
o o

peak memory [GB]

T
0 100

T
200
time [s]

T
300

T T T
20 30 40

iteration

v v
20 30
iteration

31

v
30
iteration

10

20 30 40
iteration



cost. cost

W B 0o~

cost

final3068
x10°

w
o
5]

—— VBA-32 (ours)

2.0 2.04

—— VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

N
o
o

= x
Toooooood S
; o

>

-
o
o

#it linear solver

trust region radius
peak memory [GB]

ooo
Yoo

T 1072 T T T T
200 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

time [s] iteration iteration iteration iteration

o
-
=g
5]

final4585
x10° x10°8

— VBA-32 (ours) 107+
—— VBA-64 (ours)
explicit-32
explicit-64
ceres-implicit
ceres-explicit

10°

cost

w & U o~

1]
2
]
&
T
o
£

trust region radius
peak memory [GB]

1034

T T T T T T T T T T T T T 1072 T T T T
0 250 500 750 1000 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

time [s] iteration iteration iteration iteration

final13682

ceres-implicit
ceres-explicit

-
o

3.0

-
=)

2.0

inear solver

trust region radius
peak memory [GB]
=
(=]
2

T T T T 1072 T T T T
0 500 1000 0 10 20 30 40 50 0 10 20 30 40 50 30 40 50 0 10 20 30 40 50

time [s] iteration iteration iteration iteration

32



