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Abstract— The Label Propagation (LP) algorithm, first in-
troduced by Zhu and Ghahramani [1], is a semi-supervised
method used in transductive learning scenarios, where all
data are available already in the beginning. In this work, we
present a novel extension of the LP algorithm for applications
where data samples are observed sequentially – as is the case
in autonomous driving. Specifically, our “Incremental Label
Propagation” algorithm efficiently approximates the so called
harmonic solution on a nearest-neighbor graph that is regularly
updated by new labeled and unlabeled nodes. We achieve this
by reformulating the original algorithm based on an active set
of nodes and by introducing a threshold to decide whether the
label of a given node should be updated or not. Our method
can also deal with graphs that are not fully connected, and
we give a formal convergence proof for this general case. In
experiments on the challenging KITTI benchmark data stream,
we show superior performance in terms of both test accuracy
and number of required training labels compared to state-of-
the-art online learning methods.

I. INTRODUCTION

Most standard learning approaches used for classification
tasks in robotics have the drawback that they either require a
large amount of hand-labeled training data, or they are hardly
adaptive to newly observed data samples. In particular, when
considering an object classification problem from a given
stream of training data, there is often just not enough ground
truth information available to train a complex model such as a
deep neural network. And even if there were sufficient training
data, it is very difficult to efficiently update the classifier on
newly arriving data from the stream, be it labeled or unlabeled.

Therefore, in this paper, we propose a learning algorithm
for classification that is both semi-supervised and incremental,
i.e. it can perform very fast model updates for new data sam-
ples. Furthermore, and in contrast to other semi-supervised
approaches like transductive SVMs (Vapnik [2]) or more
recent deep learning approaches (Kingma et al. [3], Sajjadi
et al. [4], Haeusser et al. [5]), we can more flexibly and
more directly trigger the learning process from a single
sample instead of using batches of data with a fixed size.
Our approach is based on the idea that newly observed data
samples – both labeled and unlabeled ones – only have a local
influence on the class predictions of the given unlabeled graph

∗The authors contributed equally.
1Computer Vision Group, Dep. of Computer

Science, TU Munich, 85748 Garching, Germany
{chiotell,zimmermann,cremers,triebel}@in.tum.de

2Carl Zeiss Microscopy GmbH, 81379 Munich, Germany
zimmermann.franzi@t-online.de

3Institute of Robotics and Mechatronics, Dep. of Perception and Cog-
nition, German Aerospace Center (DLR), 82234 Wessling, Germany
rudolph.triebel@dlr.de

nodes. Thus, it is actually not necessary to recompute LP
from scratch every time a sample arrives. In our formulation,
this notion of locality is guided by a threshold ϑ, by which
the trade-off between efficiency and accuracy is managed. In
practice, however, it turns out that a relatively small area of
influence (i.e. a large value of ϑ) already results in a very
good performance while reducing the number of propagation
iterations significantly.

To summarize, our key contributions are:
• A novel incremental semi-supervised learning method,

we call “Incremental Label Propagation”, where the area
of influence of the algorithm can be easily tuned with
the one hyper-parameter ϑ.

• A proof of convergence of the Label Propagation
algorithm for partially connected graphs.

• An empirical evaluation of our algorithm on a challeng-
ing benchmark data stream (See Fig. 1), showing the
effectiveness of exploiting unlabeled data for stream-
based classification.

II. RELATED WORK

The Label Propagation (LP) algorithm [1] has been used by
several authors for semi-supervised learning tasks. Chapelle
et al. [6] show that the LP algorithm is equivalent to the well
known Jacobi algorithm for solving sparse linear systems. In
fact, LP solves the problem of inverting the matrix ∆UU , i.e.
the submatrix of the graph Laplacian corresponding to the
unlabeled nodes. As introduced by Zhu et al. [7], the resulting
solution is the so called harmonic solution on the graph. Zhu
and Ghahramani [1] prove convergence of their algorithm
for fully connected graphs, but we also give a convergence
proof on partially connected graphs, where each connected
component contains at least one labeled node.

In the literature, one can find several ideas for efficiently
approximating the harmonic solution for a large non-growing
graph. The algorithm of Ganu and Kveton [8] computes the
harmonic solution on a subgraph of nodes for which the
label can be predicted with high certainty. However, for the
algorithm to be fast, the subgraph must be small, which
means that only the labels of a small subset of nodes will
be predicted. Delalleau et al. [9] suggest to compute the
harmonic solution on a subset of unlabeled nodes S, where
the label vectors of the nodes outside of S are set equal
to the weighted average of their labeled neighbors and the
neighbors in S. While this is more efficient, no theoretical
analysis is given on how much the solution differs from the
exact harmonic solution on the full graph. Moreover, it is not
clear how to get from the harmonic function approximation



on a fixed graph to the approximation on an enlarged graph
without computing everything from scratch.

Delalleau et al. [9] derive an inductive formula to assign
an optimal label to a new point given the harmonic solution
on the old points. However, optimality only holds under the
assumption that the label vectors of old points cannot change.
If many unlabeled or a few labeled points arrive, the new
information is not utilized to update the labels of previously
classified points. In the algorithm of Valko et al. [10], new
incoming points are first assigned to one of k clusters using
the doubling algorithm for incremental k-center clustering
(Charikar et al. [11]). Then, each new point is replaced by
its cluster center and the harmonic solution is computed on
the cluster centers. Therefore, only a k × k instead of a n × n
matrix has to be inverted to get the exact harmonic solution.
Moreover, only the cluster centers and the cluster sizes have
to be stored instead of all the data. However, the number of
clusters k, that shall represent the data points, must be fixed
beforehand. Also, once a point is assigned to a cluster, its
original feature vector is discarded, so its position inside the
cluster is not taken into account any more.

Zhu [12] also uses the idea of clustering to approximate
the harmonic solution on large graphs. He computes the
harmonic solution on a backbone graph consisting of mixture
components, the so called harmonic mixture solution. An
advantage of this approach is that a generative mixture model
can naturally handle unseen points. Although a prediction for
the label of a new point is easy to obtain, new points do not
influence the model, except if the whole model is retrained.
This is problematic if there are only a few points available
in the beginning. Moreover, the problem of determining the
number of clusters remains. The authors show that for a
good approximation of the harmonic solution, the number of
mixture components must be above a certain threshold that is
data-dependent. Thus, the determination of a good number of
clusters that keeps the effort of finding the harmonic mixture
solution low, but still yields an acceptable approximation of
the harmonic solution remains an open question.

Therefore, in this work, we do not reduce the data
to a backbone graph but present the “Incremental Label
Propagation” algorithm that allows us to approximate the
harmonic solution on the full graph consisting of all nodes
efficiently, in the context of a permanently growing graph.

III. INCREMENTAL LABEL PROPAGATION

A. Reviewing Offline Label Propagation

We denote a partially labeled data set D of size n as the
union of two subsets: the set L with l labeled data points
(x1, y1), . . . , (xl, yl) where xi ∈ R

d are feature vectors and
yi ∈ {1, . . . ,C} are class labels, and the setU with u unlabeled
points xl+1, . . . , xl+u, i.e. n = l + u. Our aim is to infer class
labels for unlabeled data points from the labeled ones. To do
this, we compute edge weights wi, j based on a given metric
M and build a k-nn graph G with edge weights

wi, j =

exp(−(xi − x j)T M(xi − x j)) if j ∈ N(i)
0 otherwise,

(1)

Fig. 1: An example image (top) and the corresponding
reconstructed 3D environment (bottom) with found objects
from the KITTI Vision Benchmark Suite Geiger et al. [13].

where by j ∈ N(i) we denote that j is a neighbor of i. In
particular, we find the kl labeled and ku unlabeled nearest
neighbors of i. We define the weight matrix of all wi, j with
W ∈ Rn×n, the diagonal matrix D = diag(d1, . . . , dn) where
di =

∑n
j=1 wi, j , and the transition matrix P = D−1W. Labels

are represented in a label matrix F ∈ Rn×C , where ideally
entry fk,c = 1 if xk has label yk = c and fk,c = 0 otherwise.
From the convention that all labeled points appear first and
all unlabeled ones afterwards, it follows that P consists of
four blocks:

P =

(
PLL PLU

PUL PUU

)
, (2)

where the subscripts of the blocks indicate transitions between
labeled, unlabeled and mixed point pairs. Similarly, F consists
of a labeled block FL - the one-hot encoding of the true labels
- and an unlabeled block FU , i.e. F = (FT

L FT
U)T , where FU

initially contains zero vectors.
With this notation, the LP algorithm introduced by Zhu and
Ghahramani [1] can be formalized in two steps that are
repeated until convergence. In the first step, a new label
matrix Fnew is computed by propagating the given labels
according to the transitions, i.e. Fnew ← PFold. In the second
step, the labels of the labeled samples are reset to those from
the ground truth, i.e. Fnew

L ← FL. A possible convergence
criterion is whether the norm ||Fnew

U − Fold
U ||∞ drops under a

given threshold τ.

B. Convergence on Partially Connected Graphs

Zhu and Ghahramani [1] prove the convergence of the LP
algorithm but their proof (and the equivalent proof of Zhu
[12]) only applies if there is a γ < 1 s.th. ∀i ∈ {1, ..., u} :∑u

j=1 (PUU)i, j ≤ γ, which means that each unlabeled node
has to be connected to a labeled node by an edge of weight
greater than 0. This assumption is of course true for fully
connected graphs with positive weights. We will show here
convergence on not fully connected graphs. First we assume
that each connected component of nodes contains at least
one labeled node. The LP algorithm can be written as

F t+1
U = PUU F t

U + PULF t
L ,

F t+1
L = F0

L ∀t .
(3)



Obviously FL stays constant. To show the convergence of
FU , we show the convergence of the columns of FU . Let
fU be the j-th column of FU and fL the j-th column of
FL, j ∈ {1, . . . ,C}. We use the Banach fixed-point theorem
to show that the sequence defined by f t+1

U = PUU f t
U + PUL fL

converges independently of the starting point f 0
U to a fixed

point. Let us define T : [0, 1]u → Ru as T (x) = PUU x+PUL fL.
It is easy to show that T ([0, 1]u) ⊆ [0, 1]u since P and F are
both row stochastic. Thus, we need to prove the following

Theorem 1: The mapping T : x 7→ PUU x + PUL fL is a
contraction.

Proof:
As a first step, we show that ρ (PUU) = maxi |λi| < 1 where

λi are the eigenvalues of PUU . Let λ be an eigenvalue of
PUU and v ∈ Ru a corresponding eigenvector. W.l.o.g. we can
assume that

‖v‖∞ = 1 ⇒ |v j| ≤ 1∀ j. (4)

Using the definition of P, one can show that ‖PUUv‖∞ ≤ 1
and therefore it must hold that |λ| ≤ 1 because for |λ| > 1 we
would get the contradiction ‖PUUv‖∞ = |λ|‖v‖∞ > ‖v‖∞ = 1.
It remains to show that |λ| , 1: Assume that |λ| = 1. We
define the set K = {k ∈ {1, ..., u} : |vk | = 1} that is not empty
since ‖v‖∞ = 1. With a short proof one can show that

∀ i ∈ K , j ∈ {1, ..., u} \ K : wi+l, j+l = 0. (5)

Let us define the set K̃ = { j ∈ {l + 1, . . . , l + u} | j− l ∈ K}.
K̃ andU\K̃ are separate connected components of unlabeled
nodes and each of them contains at least one labeled node
by assumption. It follows that

∃r ∈ K̃ , s ∈ L, s.th. wr,s > 0⇒

∑u
j=1 (WUU)r−l, j∑n

k=1 wr,k
< 1 (6)

With that we get

1 =|vr−l| = |λ||vr−l| = |(λv)r−l| = | (PUUv)r−l | = |
((

D−1W
)

UU
v
)

r−l
|

=|

u∑
j=1

wr, j+l∑n
k=1 wr,k

v j| ≤
1∑n

k=1 wr,k

u∑
j=1

wr, j+l|v j| ≤

∑u
j=1 wr, j+l∑n
k=1 wr,k

< 1 .

(7)

Because of this contradiction, the assumption |λ| = 1
must have been wrong and therefore we get ρ (PUU) < 1. It
immediately follows that there is an ε > 0 s.th. ρ (PUU)+ε < 1.
Now, we define a special vector norm ||.||ω and induced matrix
norm |||.|||ω s.th. |||PUU |||ω ≤ ρ (PUU) + ε. With that it follows
that T is a contraction (with Lipschitz constant ρ (PUU) + ε)
in the normed space (Ru, ‖.‖ω). For details, see Appendix.

So far we assumed that each connected component contains
at least one labeled node. We can extend the proof also for
graphs that do not satisfy this assumption. The nodes in
connected components that do not contain a labeled node
(isolated nodes) keep their label vector equal to the zero
vector throughout the algorithm. The steps performed then
are equivalent to removing the isolated nodes from the graph,
performing LP on the remaining nodes and assigning all
isolated nodes a zero label vector. And for graphs without
isolated nodes, we have proven convergence already.

Algorithm 1 Incremental Label Propagation (ILP)

Require:
data set D of size n; new data sample xn+1;
metric M; graph G; labels F; transitions P;
number of neighbors kl, ku

thresholds ϑ, Tmax

Ensure: updated label matrix FU ;

1: wn+1 ← ComputeWeights(D, xn+1,M, kl, ku) . Eq. (1)
2: P← UpdateTransition(W,wn+1 )
3: fn+1 ← Pn+1,1:n · F . Estimation
4: Q ← {k | k ∈ NT (n + 1) ∩U}
5: F̃U ← FU

6: for k ∈ Q do
7: F̃U (k) ← PUL(k)FL + PUU (k)FU

8: end for
9: ti ← 0

10: while Q , ∅ and ti < Tmax do
11: A, FU ← FilterAndUpdate(Q, F̃U , FU , ϑ)
12: Q, F̃U ← GetNextCandidates(A, F̃U , PUU)
13: ti ← ti + 1
14: end while
1: function FilterAndUpdate(Q, F̃U , FU , ϑ)
2: A ← ∅

3: for i ∈ Q do
4: δfi ← F̃U (i) − FU (i)
5: if |δfi| > ϑ then . Filter
6: FU (i) ← F̃U (i) . Update
7: A ← A∪ (i, δfi)
8: end if
9: end for

10: return A, FU

11: end function
1: function GetNextCandidates(A, F̃U , PUU)
2: Q ← ∅

3: for ( j, δf j) ∈ A do
4: for k ∈ {i | i ∈ NT ( j) ∩U} do
5: F̃U (k) ← F̃U (k) + PUU (k, j)δf j

6: Q ← Q ∪ k
7: end for
8: end for
9: return Q, F̃U

10: end function

C. Incremental Label Propagation

Our main idea is that when a new sample arrives, many
computation steps can be saved by propagating labels only
locally and stopping the propagation process if no significant
change of labels is achieved. The latter is formulated by
introducing a threshold ϑ and a decision function that returns
only indices of data samples, for which the label change is
larger than ϑ according to some norm (we use the `1-norm).
Another difference to standard LP is that we formulate the
algorithm based on a set Q of candidate nodes to propagate
labels to and a set A of nodes which actually get updated.



This leads to a simple formulation of the stopping criterion,
since label propagation is stopped when Q becomes empty 1.

The pseudocode for Incremental Label Propagation is given
in Alg. 1. We denote by FU (i) the i-th row of matrix FU ,
namely the estimated label for point i. Here, we give details
for the individual steps. First, we compute the edge weights
wn+1 = (wn+1,1, . . . ,wn+1,n) between the new data sample xn+1
and the observed samples x1, . . . , xn according to (1). This
we use to update the matrices W, D, and P, which then have
n + 1 rows and columns. With P, we estimate a label vector
fn+1 for the new node as a weighted average of the labels of
its labeled and unlabeled neighbors (line 3). After that, we
initialize the candidates set Q, which at first contains only the
nodes from the unlabeled set U, that have the new node as a
nearest neighbor. We denote these reverse nearest neighbors
of sample xn+1 as NT (n + 1). We also initialize the tentative
label updates matrix F̃U (line 5). (In practice we only need to
store the rows of F̃U that get updated during the algorithm.)
In lines 6 to 8, the label propagation starts by computing
the tentative labels of the reverse nearest neighbors of the
new node. This is the only step where information from the
transition submatrix PUL is used.

In lines 10 to 14, the main idea of the ILP algorithm
is presented. From the set Q of candidates that received a
tentative label update, we identify the ones whose update is
considered significant. In particular, the `1-distance between
their previous and tentative label has to be larger than ϑ.
Note that ϑ implicitly defines the area of influence of the
algorithm: for ϑ = 0 all changes are considered significant
and we have offline LP with sets starting from the new node.
Any other value for ϑ constrains the range of the region
growing process, leading to a more local effect. We apply the
significant tentative updates by storing the new labels in the
original matrix FU (line 6 of function FilterAndUpdate). In
set A we store the indices of the updated nodes along with
their label difference δf, so we can continue the propagation
with their reverse neighbors in the next iteration.
The ILP algorithm presented in Alg. 1 for new unlabeled
points is almost identical for new labeled points with the
only difference that fn+1 does not need to be estimated.

IV. RUNTIME ANALYSIS

We consider the insertion of a single node. We denote
by kl and ku the number of labeled and unlabeled neighbors
of each node in the graph respectively. The main burden
of the computation of the node’s edge weights lies in the
distance computation between the new node and the existing
nodes in the graph which in turn depends on the choice of
nearest neighbor algorithm. The trivial computation takes
O(ntd) where d is the data dimensionality and nt = lt + ut is
the number of nodes at iteration t. This can be reduced to
logarithmic time using an efficient data structure for online

1Note that the use of the sets Q and A alone does not turn LP into an
incremental algorithm. In fact, for ϑ = 0, ILP with sets is equivalent to
offline LP for the observed samples at the time. The insight is, that for any
point, only its reverse neighbors can change their label in every LP iteration,
i.e. the graph can be equally processed using a region-growing strategy.

node insertion and nearest neighbor search, such as Ball Trees
as described in the online insertion algorithm of Omohundro
[14]. We denote this runtime as Oknn.

A major advantage of using a k-nn as opposed to an ε-nn
graph in an incremental setting is that updating the old entries
of W and P is independent of the number of nodes nt. Using
a fixed capacity heap for storing the adjacency list of each
node, a node’s labeled neighbors can be updated in log(kl)
and equivalently unlabeled neighbors in log(ku), as only one
neighbor might get pushed out of the heap to be replaced by
the new node. Therefore the weight matrix can be updated
in O((kl + ku) log(max(kl, ku))). The update of P is done in
O((kl + ku)2) since only the rows of nodes connected to the
new point must be updated.

The estimation of the new label takes O((kl + ku)C) time.
Accessing the neighbors and reverse neighbors of points can
be done in constant time using a hash map at the cost of
O(n) auxiliary space. Each inner iteration in the functions
GetNextCandidates and FilterAndUpdate takes O(C) time,
therefore the runtime depends mainly on how the sizes of
Q and A evolve. The size of A is always bounded by the
size of Q but the size of Q depends on the number of reverse
neighbors, which is not deterministic. In practice though this
is close to ku

2. With this assumption and with ϑ = 0, Q
and A grow as ku, k2

u, k
3
u, . . ., etc., as we consider all label

updates significant. Therefore, the number of iterations until
all unlabeled points have been reached by label propagation
is bounded by logku

(ut). The total number of operations in
the main loop then is

C(ku + k2
u + . . . + k

logku ut
u ) = C

ut − 1
ku − 1

= O(utC
1

ku − 1
). (8)

And thus the total runtime of incremental label propagation
for a node arriving at time t is

Oknn + O((kl + ku)2 + (kl + ku)C + utC
1

ku − 1
). (9)

V. EXPERIMENTS

A. Evaluation and Setup

In this work, we use the standard Euclidean metric (M = I)
to compute the edge weights (See Eq.1). For evaluation we use
several metrics: the `1 error, the 0-1 classification error and the
cross-entropy between ground truth labels and the predictions
FU . We also compute the entropy of our predictions FU ,
the number of label propagation iterations per new point
and the wall-clock computation time per new point. We set
Tmax = logku

ut if ku > 1 and Tmax = 30 if ku = 1.3

We first examine the influence of different hyperparameters
and the performance of ILP against its fully supervised
counterpart, using the MNIST dataset of handwritten digits
[15] that consists of 60000 training and 10000 test images of
dimensions 28 by 28. We do not compute any features but
use the raw pixel values normalized to lie in [0, 1].

2One can enforce the number of reverse neighbors to be equal to ku by
using a mutual instead of a regular k-nn graph.

3Code available at
https://github.com/johny-c/incremental-label-propagation.

https://github.com/johny-c/incremental-label-propagation


Fig. 2: Illustration of how ϑ influences different metrics. Top row: `1 error, cross entropy and classification error (based
on arg max) w.r.t. the predictions FU . Bottom row: Entropy of the predictions, number of label propagation iterations and
actual computation time after each new node.

Due to lack of space, we present results with ku = kl = 3.
However, we found the algorithm to be very robust with
respect to values of ku and kl up to 19, except for the case
of kl = 1, where the final accuracy dropped by 5%.

B. Influence of ϑ

The ratio of observed labels is fixed to 5% and we set
kl = 3 and ku = 3. In Fig. 2 we show how different metrics
are affected by ϑ. As expected, the `1-error decreases as we
decrease ϑ, namely as we move closer to offline LP. On
the other hand, the number of iterations per observation and
therefore the runtime decreases when we increase ϑ, as the
algorithm is constrained to act more locally. For reference,
with ϑ = 0, the total runtime was 4162.40s, while with
ϑ = 1.0 only 3143.46s. We observe several interesting facts:

• The estimation error is robust to changes in ϑ, as the max.
likelihood of the correct predictions is mostly preserved.

• The entropy of the predicted label distributions behaves
very similar to the `1-error making it a good candidate
metric for self-evaluation/introspection during learning.

• From the cross-entropy evaluation, it seems that choosing
a large enough ϑ has a regularizing effect: When ϑ is
small, the cross-entropy is strongly oscillating, as every
label update is trusted equally. When ϑ is larger, the
“propagation region” is narrower and therefore cross-
entropy is smoother. In fact for ϑ = 2, where we only
have label estimation and no propagation, the cross-
entropy and often also the estimation error is minimized.
However, when testing on a holdout set, we find that
intermediate values of ϑ achieve the best accuracy. This
suggests that a too small ϑ causes overfitting, and a ϑ
that is too large causes underfitting.

C. Influence of number of observed labels

In this experiment we evaluate how the accuracy of the
algorithm is affected by the number of observed labels (Fig. 3).
We compare the test error when using just the labeled samples
against the test error when also using the labels estimated by
ILP for the unlabeled training samples. We use kl = 3, ku = 3
and ϑ = 0.3. Predicting the labels of the test set amounts to
computing FT = PT LFL + PTU FU . Taking into account only
the first summand PT LFL is weighted k-nn querying with
respect to the given labeled samples. In Table I we show that
ILP is consistently better than weighted k-nn, demonstrating
the utilization of the unlabeled samples.

Fig. 3: Estimation error on the observed unlabeled samples
of MNIST for different number of observed labels in total.

D. Confusion Analysis

In continuation of the previous experiment, we trained
incrementally on MNIST observing only 5% of the labels. In
Fig. 4 we show the final confusion matrices of k-nn, where
only labeled neighbors vote for the label of test nodes, and
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Fig. 4: Confusion matrices for the test set of MNIST. Left: Predicting only with 3 labeled neighbors (test error=7.67%),
Middle: Predicting with ILP, taking into account also the estimated labels of 3 unlabeled neighbors (test error=7.22%).
Right: Some samples for which the label predictions were corrected by ILP.

#Labels Est. error (%) knn error (%) ILP error (%)
20 42.35 41.17 40.11

100 35.17 27.01 26.61
500 23.54 14.54 14.09

1000 18.73 11.27 10.68
2000 14.17 8.56 8.2

TABLE I: Final estimation error on the unlabeled training
set, knn error and ILP error on the test set of MNIST.

ILP, where the estimated labels of the unlabeled training
nodes are also considered. We present examples of images
misclassified by k-nn that were correctly classified by ILP.

E. KITTI Benchmark

We further evaluate Incremental Label Propagation on
the more challenging setting of a stream of data. For this
experiment we use data from the KITTI benchmark 4. We
conduct the same experiment as Narr et al. [16] 5. We
concatenate 18 streams of segmented 3D point clouds from
urban traffic environments [13] to form one long stream. Each
of the 25090 segments corresponds to a 3D bounding box
containing points that represent a given object candidate. For
each such candidate, a 60-dimensional feature vector was
computed as proposed by Himmelsbach et al. [17]. These
features consist of global characteristics such as box volume
and mean intensity, as well as of distributions of local ones
such as scatterness or flatness. These features can be computed
in real time. For the test data, each of the 18 subsets was split
at a 2:1 ratio to obtain a stream of 16000 training samples
and a set of 9,090 test samples. We used the 100 first training
samples (50 labeled and 50 unlabeled) as a “burn-in” set
to initialize the algorithm. In Fig. 6, we show the order of
appearance of labeled and unlabeled samples from each class
in the described training stream, as well as the behavior of
ILP when only 10% of the labels are observed.

4http://www.cvlibs.net/datasets/kitti/
5Data were provided by the authors upon our request.

The methods mentioned by Narr et al. [16] were evaluated
on the test set after every 1000 observations and their final
test error is presented in Table II. We note that we do not
compare against offline methods, as they are not relevant in a
stream-based learning scenario. We fixed ϑ to 1.0 and ran the
experiment for different ratios of given labels (See Fig. 5).
With only 5% of the labels, ILP already outperforms Online
Random Forests (Saffari et al. [18]) and online multi-class
Gradient Boost (Saffari et al. [19]) and achieves comparable
accuracy to Mondrian Forests (Lakshminarayanan et al. [20]).
Note that all other methods use all training labels. With
20% of the labels, we achieved a test error of 9.53%, which
outperforms even the Mondrian Forest method.
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Fig. 5: Test error of ILP over time for different ratios of
labeled data in the stream.

Method Final Test error(%)
OMCGB (Saffari et al. [19] 13.00
ORF (Saffari et al. [18]) 13.70
MF (Lakshminarayanan et al. [20]) 10.00
ILP (5% labels) 10.75
ILP (10% labels) 10.18
ILP (20% labels) 9.53

TABLE II: Final test error of different online learning methods
for the described experiment on the KITTI benchmark.

http://www.cvlibs.net/datasets/kitti/


Fig. 6: Results on the constructed stream from the KITTI dataset given 10% of labels (see text). Left: The order of appearance
of labels in the stream, Middle: ILP error on the unlabeled training set, Right: Computation time for different values of ϑ.

VI. CONCLUSIONS

In this paper we presented “Incremental Label Propagation”,
an efficient incremental variant of the Label Propagation
algorithm introduced by Zhu and Ghahramani [1] that is
useful for object classification from sparsely labeled streams
of data. We provided a proof of convergence of the original
algorithm for partially connected graphs and gave an analysis
for the runtime of our algorithm. With various experiments we
investigated the influence of hyperparameters on the behavior
of ILP, showed the utilization of the unlabeled samples
over its purely supervised counterpart and demonstrated the
performance improvement, even over fully supervised online
learning methods on a challenging benchmark dataset.

APPENDIX

To get a suitable norm on Ru to show that T is a contraction
we use lemma 5.6.10 of Roger A. Horn [21]. It states that for
any matrix A ∈ Rn×n and ε > 0 there is a matrix norm |||.|||ω,
s.th. |||A|||ω ≤ ρ(A) + ε. This matrix norm is constructed as
follows: Because of theorem 2.3.1 in [21] there is a unitary
matrix Z ∈ Rn×n and an upper triangular matrix ∆ ∈ Rn×n s.th.
A = U∆U∗. Let be Dt = diag(t, t2, t3, ..., tn) and Q := DtU∗.
Then the matrix norm we are interested in is defined by

|||A|||ω := |||DtU∗AUD−1
t |||1 = ||| (DtU∗) A (DtU∗)

−1
|||1

where |||A|||1 := max
1≤ j≤n

n∑
i=1

|ai, j| .
(10)

Example 5.6.4 in [21] shows that the norm |||.|||1 is induced
by the `1-vector-norm ||x||1 =

∑n
i=1 |xi| on Rn. Following

theorem 5.6.7 in [21] the matrix norm |||.|||ω is then induced
by the vector-norm ||x||ω = ||DtU∗x||1. As shown in the proof
of lemma 5.6.10 in [21], for t large enough the matrix norm
|||.|||ω fulfills |||A|||ω ≤ ρ(A) + ε .
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