
Supplementary Material to:

Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization

Lukas von Stumberg, Vladyslav Usenko, Daniel Cremers

This is the supplementary material to the paper ”Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization”.
Here we provide parameter studies further evaluating the method (section 1), a way to measure the convergence of the scale
(section 2) and details on how to compute the relative Jacobians (section 3).

1 PARAMETER STUDIES

In order to further evaluate the method we provide several parameter studies in this section. As in the result section of the
main paper, we have run all variants 10 times for each sequence of the EuRoC-dataset and present either the accumulation
of all results or the median of the 10 runs. First of all we show the dependence on the number of points in Fig. 1. The main
takeaway of this should be that because of the addition of inertial data, we can significantly reduce the number of points
without loosing tracking performance.

0 0.1 0.2 0.3 0.4 0.5
rmse

0

10

20

30

40

50

60

70

80

90

100

110

n
u
m

b
er

o
f
ru

n
s

2000 points

1000 points

500 points

200 points

Fig. 1: RMSE when running the method (not in realtime) with different numbers of active points. Interestingly focusing on
fewer (but more reliable points) actually improves the performance, both in precision and in runtime.

In order to evaluate the importance of the novel dynamic marginalization strategy we have replaced it with two alternatives
(Fig. 2). For one example we have used normal marginalization instead where only one marginalization prior is used.
Furthermore we have tried a simpler dynamic marginalization strategy, where we do not use Mhalf, but instead directly reset
the marginalization prior with Mvisual, as soon as the scale interval is exceeded. Clearly dynamic marginalization yields the
most robust result. Especially on sequences with a large initial scale error, the other strategies do not work well. Fig. 3 shows
the difference in the scale convergence. When using the simple marginalization strategy the marginalization prior gets reset
directly to Mvisual resulting in a slower scale convergence and oscillations (Fig. 3c and 3d). With a normal marginalization



0 0.1 0.2 0.3 0.4 0.5
rmse

0

10

20

30

40

50

60

70

80

90

100

110

n
u
m

b
er

o
f
ru

n
s

our method (with dynamic marginalization)

simple dynamic marginalization

normal marginalization

no gravity optimization

Fig. 2: The method run (in realtime) with different changes. ”Simple dynamic marginalization” means that we have changed
the marginalization to not use Mhalf, but rather replace Mcurr directly with Mvisual, when the scale interval is exceeded.
For ”normal marginalization” we have used the normal marginalization procedure with just one marginalization prior. For
the pink line we have turned off the gravity direction optimization in the system (and only optimize for scale). This plot
shows that the novelties presented in this paper, in particular the joint optimization with scale and gravity, and the dynamic
marginalization procedure are important for the accuracy and robustness of the system.

the scale estimates overshoots and it takes a long time for the system to compensate for the factors with a wrong scaled that
were initially marginalized (Fig. 3e and 3f). With our dynamic marginalization implementation however the scale converges
much faster and with almost no overshoot or oscillations (Fig. 3a and 3b).

We have also disabled the joint optimization of gravity direction in the main system (Fig. 2). Clearly the simple initialization
of gravity direction (described in section III-D) is not sufficient to work well, without adding gravity direction to the model.

2 MEASURING SCALE CONVERGENCE

For many applications it is very useful to know when the scale has converged, especially as this can take an arbitrary
amount of time in theory. The lack of this measure is also one of the main drawbacks of the initialization method described
in [1]. Here we propose a simple but effective strategy. With si being the scale at time i and n being the maximum queue
size (60 in all our experiments) we compute

c =
max

n
j:=i�n+1 sj

min

n
j:=i�n+1 sj

� 1 (A.1)

Fig. 4b shows a plot of this measure. When c is below a certain threshold cmin (0.005 in our experiments) we consider the
scale converged and fix ⇠m d. While this does not influence the accuracy of the system, fixing the scale might be useful for
some applications.



0 10 20 30 40 50
time (s)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
sc

a
le

fa
ct

or

scale estimate

groundtruth scale

(a) Scale estimate for V2 03 difficult with our method. After 21
seconds our system considered the scale converged (using the
measure defined in section 2) and fixed it for the rest of the sequence.

0 10 20 30 40 50 60 70 80
time (s)

0

5

10

15

sc
a
le

fa
ct

or

scale estimate

groundtruth scale

(b) Scale estimate for MH 04 difficult with our method

0 10 20 30 40 50
time (s)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

sc
al

e
fa

ct
or

scale estimate

groundtruth scale

(c) Scale estimate for V2 03 difficult with the simple dynamic
marginalization strategy (see also Fig. 2).

0 10 20 30 40 50 60 70 80
time (s)

0

5

10

15

sc
al

e
fa

ct
or

scale estimate

groundtruth scale

(d) Scale estimate for MH 04 difficult with the simple dynamic
marginalization strategy.

0 10 20 30 40 50
time (s)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

sc
al

e
fa

ct
or

scale estimate

groundtruth scale

(e) Scale estimate for V2 03 difficult with normal marginalization.

0 10 20 30 40 50 60 70 80
time (s)

0

5

10

15

sc
al

e
fa

ct
or

scale estimate

groundtruth scale

(f) Scale estimate for MH 04 difficult with normal marginalization.

Fig. 3: Scale estimates for the different marginalization strategies evaluated on V2 03 difficult (left) and MH 04 difficult
(right). All figures show the median result of the 10 runs that were accumulated in Fig. 2.

3 CALCULATING THE RELATIVE JACOBIAN

As mentioned in section III-F.1 we want to compute Jrel, such that (11) holds.
We convert between the poses using

(A.2)⇠Mw imu = ⇠m d �
�
⇠Dcam w

��1 � ⇠�1
m d � ⇠Mcam imu=: (⇠Dcam w, ⇠m d)

For any function ⌦(⇠) : sim(3) ! sim(3) we define the derivative d⌦(⇠�✏)
d✏ implicitly using

⌦(⇠)�1 � ⌦ (⇠ � ✏) =
d⌦(⇠ � ✏)

d✏
· ✏+ ⌘(✏) · ✏ (A.3)

where the error function ⌘(✏) goes to 0 as ||✏|| goes to 0.
Note that in principle there are three other ways to define this derivative (as you can place the increment with ✏ as well

as the multiplication with the inverse on either side). However it can be shown (see section 3.1) that only with this version



0 20 40 60
time (s)

0

2

4

6

8

sc
a
le

fa
ct

o
r

scale estimate

groundtruth scale

(a) Scale estimate

0 20 40 60
time (s)

10-2

100

sc
al

e
ac

u
ra

cc
y

m
ea

su
re

c

cmin

(b) Accuracy measure c.

Fig. 4: Scale estimate and scale accuracy measure c for MH 04 difficult (median result of 10 runs in terms of tracking
accuracy).

the following chain rule holds for f(⇠) : sim(3) ! R

df (⌦ (⇠ � ✏))

d✏
=

df (⌦ (⇠)� �)

�
· d⌦ (⇠ � ✏)

✏
(A.4)

Using these definitions the relevant derivatives for  can be computed (see section 3.2 and 3.3)

(A.5)
@ (⇠Dcam w � ✏, ⇠m d)

@✏
= �Adj

�
T�1

cam imu ·Tm d ·Tcam w

�

(A.6)
@ (⇠Dcam w, ⇠m d � ✏)

@✏
= Adj(T�1

cam imu ·Tm d ·Tcam w)� Adj(T�1
cam imu ·Tm d)

Stacking these derivatives correctly we can compute a Jacobian Jrel such that

Jimu = J0
imu · Jrel (A.7)

Using this we can finally compute

Himu = JT
rel ·H0

imu · Jrel and bimu = JT
rel · b0imu (A.8)

3.1 Proof of the chain rule

In this section we will proof the chain rule (A.4).
We define the multivariate derivatives implicitly:

f(⌦(⇠)� �)� f(⌦(⇠)) =
df (⌦ (⇠)� �)

�
· � + µ(�) · � (A.9)

where the error function µ(�) goes to 0 as � goes to zero. We can rewrite equation A.3 by multiplying ⌦(⇠) from the left

⌦ (⇠ � ✏) = ⌦(⇠)�
✓
dl⌦(⇠ � ✏)

d✏
· ✏+ ⌘(✏) · ✏

◆
(A.10)

Using this we can compute

(A.11)

f(⌦(⇠ � ✏))� f (⌦(⇠))
A.10
= f

0

BBB@
⌦(⇠)�

✓
dl⌦(⇠ � ✏)

d✏
· ✏+ ⌘(✏) · ✏

◆

| {z }
=:�✏

1

CCCA
� f(⌦(⇠))

= f (⌦(⇠)� �✏)� f(⌦(⇠))
A.9
=

df (⌦ (⇠)� �)

�
· �✏ + µ(�✏) · �✏

=

df (⌦ (⇠)� �)

�
·
✓
dl⌦(⇠ � ✏)

d✏
· ✏+ ⌘(✏) · ✏

◆
+ µ(�✏) ·

✓
dl⌦(⇠ � ✏)

d✏
· ✏+ ⌘(✏) · ✏

◆

=

df (⌦ (⇠)� �)

�
· dl⌦(⇠ � ✏)

d✏
· ✏+ df (⌦ (⇠)� �)

�
· ⌘(✏) · ✏+ µ(�✏) ·

dl⌦(⇠ � ✏)

d✏
· ✏+ µ(�✏) · ⌘(✏) · ✏

=

df (⌦ (⇠)� �)

�
· dl⌦(⇠ � ✏)

d✏
· ✏+

✓
df (⌦ (⇠)� �)

�
· ⌘(✏) + µ(�✏) ·

dl⌦(⇠ � ✏)

d✏
+ µ(�✏) · ⌘(✏)

◆

| {z }
=:�(✏)

·✏



When ✏ goes to 0, then �✏ also goes to 0 (as can be seen from its definition). Using this it follows by the definition of the
derivative that ⌘(✏) and µ(�✏) go to 0 as well. This shows that �(✏) goes to 0 when ✏ goes to 0. Therefore the last line of
equation A.11 is in line with our definition of the derivative and

df (⌦ (⇠ � ✏))

d✏
=

df (⌦ (⇠)� �)

�
· dl⌦ (⇠ � ✏)

✏
(A.12)

⇤
3.2 Derivation of the Jacobian with respect to pose in Equation (A.5)

In this section we will show how to derive the Jacobians @ (⇠D
cam w�✏,⇠m d)

@✏ using the implicit definition of the derivative
shown in Equation (A.3).

In order to do this we need the definition of the adjoint.

(A.13)T · exp(✏) = exp(AdjT · ✏) ·T

with T 2 SIM(3). It follows that
(A.14)log

�
T · exp(✏) ·T�1

�
= AdjT · ✏

Using this we can compute

(A.15)

 (⇠Dcam w, ⇠m d)
�1 � (⇠Dcam w � ✏, ⇠m d)

A.2
=

⇣
⇠m d �

�
⇠Dcam w

��1 � ⇠�1
m d � ⇠Mcam imu

⌘�1
�
⇣
⇠m d �

�
⇠Dcam w � ✏

��1 � ⇠�1
m d � ⇠Mcam imu

⌘

=

�
⇠Mcam imu

��1 � ⇠m d � ⇠Dcam w � ⇠�1
m d � ⇠m d| {z }

=0

�✏�1 �
�
⇠Dcam w

��1 � ⇠�1
m d � ⇠Mcam imu

= log

⇣�
TM

cam imu

��1 ·Tm d ·TD
cam w · exp (✏)�1 ·

�
TD

cam w

��1 ·T�1
m d ·T

M
cam imu

⌘
A.14
=

Adj
⇣�

TM
cam imu

��1 ·Tm d ·TD
cam w

⌘
· (�✏)

After moving the minus sign to the left this is in line with our definition of the derivative in Equation (A.3) and it follows
that

@ (⇠Dcam w � ✏, ⇠m d)

@✏
= �Adj

⇣�
TM

cam imu

��1 ·Tm d ·TD
cam w

⌘
(A.16)

3.3 Derivation of the Jacobian with respect to scale and gravity direction in Equation (A.6)

In order to derive the Jacobian @ (⇠D
cam w,⇠m d�✏)

@✏ we need the Baker-Campbell-Hausdorff formula:
Let a, b 2 sim(3), then

log (exp(a) · exp(b)) = a+ b+
1

2

[a, b] +
1

12

([a, [a, b]] + [b, [b,a]]) +
1

48

([b, [a, [b,a]]] + [a, [b, [b,a]]]) + ... (A.17)

Here [a, b] := ab� ba denotes the Lie bracket.
In this section we will omit the superscripts to simplify the notation.

 (⇠cam w, ⇠m d)
�1 � (⇠cam w, ⇠m d � ✏)

A.2
=

�
⇠m d � ⇠�1

cam w � ⇠�1
m d � ⇠cam imu

��1 �
⇣
⇠m d � ✏� ⇠�1

cam w � (⇠m d � ✏)�1 � ⇠cam imu

⌘

= ⇠�1
cam imu � ⇠m d � ⇠cam w � ⇠�1

m d � ⇠m d � ✏� ⇠�1
cam w � ✏�1 � ⇠�1

m d � ⇠cam imu

= ⇠�1
cam imu � ⇠m d � ⇠cam w � ✏� ⇠�1

cam w �
�
⇠�1
cam imu � ⇠m d

��1 �
�
⇠�1
cam imu � ⇠m d

�
| {z }

=0

�✏�1 � ⇠�1
m d � ⇠cam imu

= ⇠�1
cam imu � ⇠m d � ⇠cam w � ✏� ⇠�1

cam w � ⇠�1
m d � ⇠cam imu| {z }

:=a

� ⇠�1
cam imu � ⇠m d � ✏�1 � ⇠�1

m d � ⇠cam imu| {z }
:=b

(A.18)

Using Equation A.14 we can compute

(A.19)a = Adj
�
T�1

cam imu ·Tm d ·Tcam w

�
· ✏

and
(A.20)b = �Adj

�
T�1

cam imu ·Tm d

�
· ✏



Now we have to prove that all terms of the Baker-Campbell-Hausdorff formula which contain a Lie bracket can be written
as µ(✏) · ✏, where µ(✏) goes to zero, when ✏ goes to zero.

We can compute
(A.21)a · b = Adj

�
T�1

cam imu ·Tm d ·Tcam w

�
· ✏ · (�Adj

�
T�1

cam imu ·Tm d

�
)

| {z }
µ1(✏)

·✏

(A.22)b · a = �Adj
�
T�1

cam imu ·Tm d

�
· ✏ · Adj

�
T�1

cam imu ·Tm d ·Tcam w

�
| {z }

µ2(✏)

·✏

[a, b] = ab� ba = (µ1(✏) + µ2(✏)) · ✏ (A.23)

Obviously µ1(✏) and µ2(✏) go to zero when ✏ goes to zero. For the remaining summands of Equation (A.17) the same
argumentation can be used. It follows that:

(A.24)(A.18) = a+ b+ µ(✏) · ✏
=

�
Adj

�
T�1

cam imu ·Tm d ·Tcam w

�
� Adj

�
T�1

cam imu ·Tm d

�
· ✏
�
· ✏+ µ(✏) · ✏

where µ(✏) goes to zero when ✏ goes to zero. According to (A.3) this means that

@ (⇠Dcam w, ⇠m d � ✏)

@✏
= Adj(T�1

cam imu ·Tm d ·Tcam w)� Adj(T�1
cam imu ·Tm d) (A.25)

REFERENCES

[1] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with map reuse,” IEEE Robot. and Autom. Lett., vol. 2, no. 2, 2017.


	Parameter Studies
	Measuring Scale Convergence
	Calculating the relative Jacobian
	Proof of the chain rule
	Derivation of the Jacobian with respect to pose in Equation (A.5)
	Derivation of the Jacobian with respect to scale and gravity direction in Equation (A.6)

	References

