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Abstract

In this document, additional information complement-
ing the original paper is given. Details of our relocaliza-
tion tracking benchmark are also described. Furthermore,
we provide results of some additional experiments evalu-
ating the performance of our method to indoor and ho-
mogeneous scenes. Lastly, additional details on the net-
work architecture used for this work is also provided. The
video and the benchmark dataset can be found at https:
//vision.in.tum.de/gn-net.

A. Details on the Evaluation Benchmark
This section describes the data included in our bench-

mark which is used for relocalization tracking. It contains
simulated data created with the CARLA [2] simulator. It
also provides Lidar aligned real-world sequences from the
Oxford RobotCar dataset [4]. The CARLA benchmark is
constructed with the stable version 0.8.2 of the simulator.
We add ground-truth poses and camera intrinsics for all im-
ages collected under different lighting and weather condi-
tions. The dataset presents the challenge of relocalization
against different weather conditions and poses. We have
collected data from 6 different cameras. The positions and
orientations of the cameras are given in Table 1. A sub-
set of the different positions and orientations of 3 of the 6
cameras are shown in Figure 1 for a certain time step. The
cameras are mounted relative to the ego-vehicle. For each
camera, 500 images are collected. For training, validation,
and testing sets, 9 different sequences for each are recorded
under three different weather conditions. The conditions
and the overall statistics of the training, validation, and test-
ing datasets are given in Table 2. Along with the camera
images, we also provide access to their corresponding dense
depth maps and semantic labels. The data is generated by
driving around Town1 of the CARLA simulator.
Relocalization tracking: For each one weather sequence,
we have created a relocalization.txt and for each all weath-
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Camera Id X Y Z Roll Pitch Yaw
Cam0 2.2 0.0 1.3 8 0 0
Cam1 2.2 0.5 1.3 8 0 0
Cam2 2.2 -0.5 1.3 8 0 0
Cam3 2.5 0.5 2.3 4 -20 0
Cam4 2.6 -0.7 2.3 -10 27 0
Cam5 3.0 -1.2 2.1 20 14 0

Table 1. This table describes the camera positions and orientations
mounted relative to the ego-vehicle.

ers sequence a relocalization other weathers.txt file. The
difference between the two relocalization files is that the
latter one contains cameras to be relocalized against differ-
ent sequences and hence different weather conditions. Each
row of the relocalization file is arranged as follows: Current
camera index, camera to be localized against, and relative
pose between these cameras. The relative pose between the
two cameras is in the coordinate system of the left cam-
era. The stereocalibration.txt provides the relative pose in-
formation between Cam0 and Cam1. Furthermore, trans-
forms.json contains the extrinsic parameters of all cameras
along with camera intrinsics.json. We have withheld the
ground truth data for the testing sets which can be evaluated
by submitting the relocalized camera poses to our servers
which shall be established upon acceptance.

#images
condition #cameras individual sequences total
WetNoon 6 500 3 9,000
SoftRainNoon 6 500 3 9,000
WetCloudySunset 6 500 3 9,000
total - 1,500 9 27,000

Table 2. This table provides a summarized information about the
proposed CARLA benchmark. It describes the weather scenarios
under which data was collected, the number of cameras, sequences
and the images for each.

Note that only for the training and validation sets, we ad-
ditionally provide dense depth maps and the semantic seg-
mentations for all the images. In order to understand the
general structure of the benchmark, the folder tree is given
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below.

benchmark sample
episode 000

relocalization.txt
relocalization other weathers.txt
transforms.json
calibs

camera.txt
stereocalibration.txt

CameraDepth0
image 00000.png
image 00001.png
...

.....
....

CameraDepth5
image 00000.png
image 00001.png
.....

CameraRGB0
image 00000.png
image 00001.png
...

.....
....

CameraRGB5
image 00000.png
image 00001.png
.....

CameraSemSeg0
image 00000.png
image 00001.png
...

.....
....

CameraSemSeg5
image 00000.png
image 00001.png
.....

episode 001
relocalization.txt
......

.......
.......

Our benchmark for the Oxford RobotCar [4] sequences
follows the same structure as that for CARLA described
above, but only utilizes images recorded from a stereo cam-
era setup rather than having 6 different cameras. The result-
ing point clouds from oxford sequences are aligned with
the global registration followed by ICP alignment using the
implementation of Open3D [7]. This alignment was per-
formed for the following sequences: 2014-12-02-15-30-

Figure 1. This figure shows a subset of 3 of the 6 camera images
(top row) from the same time step along with the corresponding
dense depth map (bottom) rendered from the simulation engine.
The cameras are oriented at different positions and orientations
with respect to each other. This provides 6 DOF. Multiple cameras
are used to enhance the variety in the dataset for training a robust
deep feature prediction network. However, it is important to men-
tion here that the correspondences used to train our models were
determined from the point clouds using DSO [6].

08 (overcast) and 2015-03-24-13-47-33 (sunny) for train-
ing. For testing, we use the reference sequence 2015-02-24-
12-32-19 (sunny) and align it with the sequences 2015-03-
17-11-08-44 (overcast), 2014-12-05-11-09-10 (rainy), and
2015-02-03-08-45-10 (snow).

B. Additional Experiments
In these supplementary experiments, we show that our

method significantly improves the robustness for large-
baseline tracking even when there are no weather/lighting
changes involved. This is done by evaluating on our
CARLA benchmark with only one weather, as well as on
the indoor EuRoC dataset [1].

B.1. CARLA results for different weathers

As mentioned in the main paper we show results on
our CARLA benchmark for relocalization between differ-
ent weather conditions in Figure 2. Figure 3 shows feature
matrices produced by our model, showing similar feature
maps even for images with differing lighting/weather con-
ditions.

B.2. Evaluation of robustness to large baselines/low
frame rates

We demonstrated in the main paper that our method
greatly improves robustness and accuracy for tracking
across different weathers.

However, even when tracking images with similar light-
ing conditions our deep features greatly improve tracking
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Figure 2. This figure shows the cumulative relocalization accu-
racy for tracking against different weathers on the CARLA bench-
mark. ORB-SLAM is more robust to changes in lighting, and
weather, whereas DSO shows the worst performance. By utilizing
our trained deep descriptors, we are able to outperform both meth-
ods by a large margin. Notice that our novel Gauss-Newton loss
has a large impact as the model trained only with the contrastive
loss performs significantly worse.

Figure 3. This figure shows images and their corresponding feature
maps predicted by our GN-Net for two different weather condi-
tions included in our CARLA benchmark. Despite shadows, rain-
drops, and water puddles the feature maps are very much similar.
Note that the feature maps are displayed via a lower-dimensional
representation using PCA.

performance for large baselines, which we will show in this
section on the CARLA and the EuRoC datasets. For all ex-
periments in this section we have changed the following two
hyperparameters: the vicinity for the GN-Loss is changed
from 1 to 3 pixels and the second term of the Gauss-Newton
loss is weighted by 2/7.
CARLA: We use the first three sequences of the training,
validation, and test set provided by our benchmark, which
all capture the same weather condition. As these sequences

do not contain substantial illumination changes any differ-
ences in the performance will mainly show the general ac-
curacy and robustness of the methods. Again, all hyperpa-
rameter tuning is only performed on the training and valida-
tion set. The cumulative relocalization accuracy for track-
ing against the same weather for the 3 evaluated methods is
shown in Figure 4. While DSO is more accurate, the indi-
rect ORB-SLAM system has higher robustness. In contrast,
our GN-Net is not only as accurate as DSO, but also more
robust than ORB-SLAM. This is because of the larger con-
vergence basin of the features maps created by our network.
EuRoC dataset with low framerates: For this experiment
we use a more traditional metric and evaluate on the chal-
lenging EuRoC MAV dataset [1]. We run each method on
the 11 sequences of the dataset and evaluate the absolute
trajectory error of the estimated poses against the ground-
truth. Note that in this experiment no relocalization track-
ing is involved. For ORB-SLAM we have disabled loop-
closures and relocalization to enable a fair comparison with
the other pure odometry methods. Stereo DSO is used with-
out modification.

For our method we have modified the normal frame-to-
frame tracking performed by the coarse tracker of Stereo
DSO to use deep features instead. As our features have
a larger convergence basin than normal images, we expect
this to improve the robustness of the tracking against large
baselines.

In order to evaluate the performance of our method on all
the 11 sequences, we split the sequence into 2 sets, while
training 2 different models. Set A contains the first 6 of
the 11 sequences, while set B comprises of the remaining
5. The first model is trained with set A and evaluated on set
B. The second model is trained with set B and evaluated on
set A. The final evaluation reported is the combination of
the evaluation results from these 2 models. This way we are
able to cover all the 11 sequences in our evaluation.

In order to evaluate the performance of the methods with
low-framerate cameras (thus including larger-baselines) we
subsample the frames included by skipping n frames for
each frame that is used. Each method is run 3 times for
all 11 sequences, for each n ∈ [0, 7]. For n = 7, e.g. this
means only every 8th image is used, simulating a frame-rate
of 2.5 Hz. The results are shown in Figure 5, again demon-
strating that our features significantly improve the robust-
ness of direct SLAM methods.

C. Network Architecture Details
We adopt a similar network architecture as the U-Net

model [5] as seen in Figure 6. What is different is that
we change the decoder part such that our feature maps can
leverage a multiscale hierarchical feature pyramid which al-
lows propagating information from coarser to finer levels of
the pyramid. For the encoder part, we followed the conven-
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Figure 4. This figure shows the cumulative relocalization accu-
racy for tracking against the same weather. ORB-SLAM tracking
is less accurate but more robust than normal direct image align-
ment. Our approach outperforms both of them. This shows that
our approach improves not only robustness to challenging lighting
situations, but also to large-baseline tracking.
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Figure 5. A cumulative plot of the absolute trajectory error
(RMSE) on the EuCoC dataset for different numbers of skipped
frames. In this experiment, we have replaced the frame-to-frame
tracking used in Stereo DSO with our deep feature matrices. We
then evaluate the accuracy of the estimated trajectory when run-
ning all sequences of the dataset with different frame-rates rang-
ing between 20Hz and 2.5 Hz We compare to normal Stereo DSO
and ORB-SLAM without loop-closures. Note that our models for
this experiment are trained entirely self-supervised, yet improving
DSO robustness almost by a factor of two.

tion of [5]. The encoder part consists of four downsampling
blocks, for which each of them uses a 2 × 2 max pooling
operation with stride 2, followed by a convolutional block
which is executed two times. The convolutional block ap-
plies a 3 × 3 convolution with padding of 1, followed by

batch normalization, and an exponential linear unit (ELU).
At each downsampling step, the number of channels is dou-
bled. The number of feature channels is set to 64.
Decoder modification: We change the decoder part of the
architecture from the default U-Net architecture in the fol-
lowing way. Beginning from the coarsest level, we upsam-
ple (with bilinear interpolation) the feature maps by 2 and
concatenate those feature maps with the feature map of the
higher level. After this, we applyD number of 1×1 convo-
lution kernels to make the filter maps of the same channel
size. This is done in an iterative fashion until the finest level.
This results in the final feature pyramid map representation
which we use for deep direct SLAM. The feature map sizes
are described in Table 3.

Level S
3 (coarsest) D ×H/8×W/8

2 D ×H/4×W/4
1 D ×H/2×W/2

0 (finest) D ×H ×W
Table 3. The hyperparameter setting for our network architecture.
Level: level of the network. S : size of the feature map. H , W :
height and width of the image, respectively.

For all experiments, we use D = 16 channels as a fea-
ture output vector size. For all trainings, we use the Adam
optimizer [3] for optimization with a learning rate of 10−6

and a weight decay of 10−3. For the correspondence con-
trastive loss term, we set the marginM = 1. For the Gauss-
Newton loss, we set the maximum distance of the start point
to the correct point to 1 pixel for all experiments in the pa-
per and to 3 pixels for the experiments in this supplemen-
tary material. All steps of the optimizer use a single image
pair as input to the network. Each pair of images fed to the
Siamese network architecture has a number of positive cor-
respondences and for each of them, a negative correspon-
dence is randomly sampled. For CARLA the input image
size is W = 512, H = 512 and for Oxford RobotCar it is
W = 640, H = 480.

D. Implementation Details
Coupling of GN-Net with DSO: DSO contains two com-
ponents where images are used for pose estimation. In the
Bundle Adjustment (BA) the pose of 8 keyframes together
with the inverse depth of all active points is optimized. For
this optimization, a very good initialization is assumed. The
coarse tracking is performed for every image and optimizes
the 6DOF pose between the latest keyframe and the current
frame together with two affine brightness parameters a and
b which represent a brightness transformation between the
two images. This is done using normal direct image align-
ment in a pyramid scheme.

We have adopted the coarse tracker to be able to use our
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Figure 6. Overview of one branch of the Siamese network architecture. Each branch is a modified U-Net [5] architecture which receives as
an input an image and predicts multi-scale feature maps [F 0, F 1, F 2, F 3]. The multi-scale feature maps from the decoder network of both
branches are then passed and used by DSO. Note that the weights between the two branches are shared.

multi-channel feature maps as an input instead of images.
Notice that we directly input all the pyramid levels created
by our network instead of downscaling the image as it is
done in DSO. This modified coarse tracker is then used for
relocalization tracking.

Notably, the network only takes a single image as an in-
put to create the feature maps. This means that the runtime
of the inference scales linearly with the number of images
involved. Therefore it would be possible to also use the fea-
tures for the BA, although this has not been done in this
specific work. Our network extracts features at over 8Hz.
In principle this would be enough for real-time operation as
we perform relocalization only on keyframes which arrive
at less than 5Hz usually.
Details of the relocalization demo: Our method works by
performing relocalization tracking as in the previous exper-
iment, which yields a solution for the transformation be-
tween the current world and the map Tworld

map . The results
for this transform are optimized in a factor graph with a
fixed random walk between successive solutions. As again
we do not consider finding candidate images, we supply the
first corresponding image in the map to the methods. From
there on no supervision signal is given. After bootstrapped
with the first image our method finds the next relocalization
candidates by determining the keyframe in the map with the
minimum distance to the current image, which can be com-
puted using the current solution for the transform Tworld

map .

E. Additional proofs
Here, we show why the linear system used in the Gauss-

Newton algorithm (Equation (6) of the main paper) also de-
fines a Gaussian probability distribution.

The Gauss-Newton algorithm assumes a Taylor expan-
sion of the energy:

E(x′) ≈ E(x0) + bT (x′ − x0) +
1

2
(x′ − x0)

TH(x′ − x0)

(1)

The optimal solution according to this approximation
can be obtained by finding the point where the derivative
of the energy is 0

0
!
=
dE

dx
= b + H(x′ − x0) (2)

x′ = x0 −H−1 · b (3)

As the taylor expansion is performed around x0 we from
now on set x = x′ − x0.

On the other hand, we can try to find the the maximum
point of a Gaussian distribution, by minimizing the negative
log-likelihood (Equation (7-8) in the main paper):

E(x) = − log fX(x) = (4)
1

2
(x− µ)TΣ−1(x− µ) + log

(
2π
√
|Σ|
)
= (5)

1

2
xTΣ−1xT − µTΣ−1x+ (6)

1

2
µTΣ−1µ+ log

(
2π
√
|Σ|
)
µ (7)

Now we set H = Σ−1 and µ = −H−1b. Then

(6) =
1

2
xTΣ−1xT − µTΣ−1x + const = (8)

1

2
xTHx + bTx = (1) (9)

This equality shows that our the linear system in the Gauss-
Newton step also represents a Gaussian probability distri-
bution with covariance H−1 and a mean at the solution of
the Gauss-Newton step.
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